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 Therapy of Malignant Gliomas – A Formi-
dable Challenge

Gliomas of astrocytic, oligodendroglial, and ependymal dif-
ferentiation comprise with an incidence of 6/100,000/year
about 70 % of all intrinsic brain tumours [1]. The WHO clas-
sification system distinguishes 4 grades of malignancy [2]
characterized by morphologic features such as mitotic activ-
ity, microvascular proliferation, and intratumoural necroses.
The most frequent glioma of the adulthood, the glioblastoma
multiforme, is a highly malignant neoplasm which displays an
exceptionally poor prognosis with a median survival time of
15 months [3]. Two years after diagnosis, only 8.2 % of all
patients are still alive [4]. The management of glioblastoma
consists of 3 main elements: (1) microsurgical resection is
followed by (2) concomitant treatment with radiotherapy plus
(3) temozolomide chemotherapy [5]. In this context, the ex-
tent of surgical resection (EOR) has increasingly been recog-
nized as an important prognostic factor in this patient popula-
tion [6]. A prospective, randomized multicentre trial in glio-
blastoma patients has demonstrated that complete resection of
the contrast-enhancing tumour leads to an overall survival of
16.7 months compared to 11.8 months after subtotal resection
[7]. However, there are 2 major limitations to radical surgical
resection: (1) glioblastomas display a highly infiltrative
growth pattern [8] which renders complete resection virtually
impossible. Careful histological studies revealed a tumour
cell spread into the contralateral hemisphere in about 30 % of
all patients at the time of diagnosis [9, 10]. Thus, even the
most radical surgical approach will not lead to curative treat-
ment [11]. (2) The functional anatomy of the brain consists of
cortical and subcortical structures such as the primary motor
cortex, Wernicke and Broca speech centres, or the internal
capsule, which need to be preserved during surgical resection
to avoid serious postoperative neurological deficits. Since pa-

tients with permanent neurological deficits have a signifi-
cantly worse survival prognosis [12], the avoidance of any
damage to these eloquent structures is mandatory in the surgi-
cal treatment of glioblastoma [13].

 Preoperative Work-Up

Traditionally, surgery planning was conducted utilizing ana-
tomical landmarks [14]. In the past, the identification of elo-
quent areas was performed in a generalized, rigid fashion
based on the functional studies by Wilder Penfield, frequently
leading to an inadequate assessment of the surgical risk in the
individual patient [15]. The major reason for this inaccuracy
is the significant individual variability of cortical organization
[16]. In addition, recent studies have demonstrated a high de-
gree of functional plasticity of the brain, which causes a sig-
nificant shift of eloquent areas to distant sites especially under
the condition of intracerebral tumour growth [17]. Preopera-
tive application of functional MRI (fMRI) and Diffusion Ten-
sor Imaging (DTI) allows the detection of eloquent cortical
and subcortical structures with high sensitivity and specificity
[18, 19]. With the advent of computer-based analysis tools
allowing the fusion of patho-anatomical, functional, and
metabolic imaging data, it is now possible to plan and execute
a precise and safe resection trajectory, thus achieving maxi-
mal EOR with minimal surgical morbidity (Figure 1). In the
case of a large, infiltrative tumour, which needs to be biopsied
in order to establish a histological diagnosis, it is of para-
mount importance to target the area of the lesion with the sus-
pected highest grade of malignancy. In a study conducted in
81 patients who received stereotactic biopsy followed by re-
section of the tumour within 60 days, the biopsy-based diag-
nosis was incorrect in 38 %, emphasizing the limitations of
stereotactic biopsy as a diagnostic tool [20]. The application
of Positron Emission Tomography (PET) scanning utilizing
tracers such as [F-18]fluoroethyltyrosine allows to detect meta-
bolically active areas within a larger tumour mass. The inte-
gration of these molecular imaging data into the target plan-
ning process can significantly increase the diagnostic yield of
stereotactic biopsies in patients with diffuse gliomas [21, 22].
In addition, the differentiation between tumour progress and
radiation-induced necrosis or pseudoprogression can be fa-
cilitated by PET scanning, supporting adequate clinical man-
agement and avoidance of unnecessary treatment measures
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such as repeated surgical resection [23]. Finally, detailed neu-
ropsychological evaluation is helpful in unmasking subclini-
cal tumour-related impairments to improve the prognostica-
tion of the postoperative course of the disease [24].

 Intraoperative Technique

One of the most substantial obstacles to an extensive resection
of gliomas is the infiltrative growth pattern of these tumours.
The development of 5-aminolevulinic acid (5-ALA) as a tu-
mour-specific fluorescence marker has caused a breakthrough
in the resection of malignant gliomas [25]. The substance
leads to an intracellular accumulation of fluorescent porphy-
rins which can be detected intraoperatively using a micro-
scope equipped with a violet-blue excitation light source
(Figure 2). A prospective, randomized controlled multicentre
trial has demonstrated a significantly better EOR in the 5-
ALA group compared to the control arm resected with con-
ventional light [26]. The intraoperative localization of the tu-
mour in addition to the adjacent, eloquent areas of the brain is
greatly facilitated by the use of neuronavigation, which has
also been termed frameless stereotaxy [27]. This technique is
based on MRI imaging conducted with fiducial markers
placed on particular landmarks of the patient’s skull. Prior to
craniotomy, an LED-emitting detection system linked to a
computer containing the imaging data set is used to calibrate
the surgical instrument set, which then allows the visualiza-
tion of the resection process intraoperatively. This approach
has significantly improved the safety and extent of resection
in glioma patients [28, 29]. However, the accuracy of neuro-
navigation-based resection, which is solely based on preop-
erative imaging, decreases during the course of the procedure
due to “brain shift” caused by the release of cerebrospinal
fluid, brain swelling, and surgical manoeuvres [30]. To ac-
count for this aspect, real-time intraoperative imaging is re-
quired. Consequently, intraoperative MRI (iMRI) has been

developed as an advanced technique for imaging-based resec-
tion control in glioma surgery [31]. A recent, controlled, pro-
spective clinical trial has demonstrated that the use of iMRI
leads to a better extent of resection and improved 6-month
survival rates in the iMRI group compared to the control
population. Interestingly, the occurrence of postoperative
neurological deficits was not significantly different between
the 2 study groups [32]. However, iMRI is complex, requiring
either transport of the patient to the scanner during the opera-
tion or a completely antimagnetic setting in the operating
room. Surgery time is prolonged due to the scanning proce-
dure and iMRI systems are expensive and not available in the
majority of neurosurgical centres [33, 34]. A valid alternative
is the use of intraoperative ultrasound (IOUS), which allows
real-time detection of infiltrative tumour margins [35]. How-
ever, IOUS-based resection control, albeit possible, is influ-
enced by surgery-related artefacts and depends significantly
on the experience of the surgeon [36]. As an alternative to
image-based surgery, awake craniotomy with intraoperative
cortical and subcortical stimulation has been established as
“gold standard” to achieve maximal EOR with minimal mor-
bidity [37]. The procedure involves tumour resection in the
awake patient, allowing serial neurocognitive tests concern-
ing motor or language function combined with direct electri-
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Figure 1. Fusion of [F-18]fluoroethyltyrosine: PET (red), functional MRI (green), and
DTI tractography (yellow) in a patient with a left frontal anaplastic astrocytoma.
Note the close vicinity of eloquent cortical and subcortical structures to the tumour
borders.

Figure 2. Resection cavity in a patient with glioblastoma following 5-aminolevuli-
nic acid application as a fluorescence marker. (A) Under conventional light, incon-
spicuous adjacent white matter is visible. (B) Fluorescence illumination reveals a
high-intensity signal indicating a residual tumour. Reprinted from [Stummer W,
Novotny A, Stepp H, et al. Fluorescence-guided resection of glioblastoma
multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospec-
tive study in 52 consecutive patients. J Neurosurg 2000; 93: 1003–13]
with permission from the American Association of Neurological Surgeons.
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cal stimulation of the brain to unmask eloquent cortical and
subcortical structures. Using this approach, a better EOR can
be achieved while avoiding damage to functionally relevant
brain structures [38, 39]. In order to avoid stress for the pa-
tient and to gain the best surgical results, a team of highly
trained and experienced physicians consisting of anaesthesi-
ologists, neuropsychologists, and neurosurgeons is manda-
tory [40]. In addition, especially if awake craniotomy is not an
option, intraoperatively evoked potential monitoring is highly
useful to detect damage to eloquent structures early during the
procedure, allowing to correct the surgical trajectory in a
timely fashion [41].

 Results from a Single Centre – High-Tech
Surgery, Is It Worthwhile?

Although it is self-evident to embrace the concept of high-
tech surgery, limited resources in today’s medical practice
may prompt the question of whether this multimodal ap-
proach is of any clinical benefit to glioma patients. Employing
the entire armamentarium outlined in this review except for
iMRI, we volumetrically analyzed the EOR and clinical out-
come in 44 patients with malignant gliomas (5 anaplastic as-
trocytoma, 39 glioblastoma) receiving surgical resection at
our department. Mean age was 62.5 years, 61.4 % of all pa-
tients presenting with focal neurological deficits. Preopera-
tive tumour size and EOR were quantified volumetrically
based on MRI imaging (Iplan Cranio, Brainlab, Feldkirchen,
Germany; Figure 3). In addition, surgical morbidity and mor-
tality as well as the improvement of neurological performance
were registered. There was no perioperative mortality, surgi-
cal morbidity was recorded in 9 % of all cases, caused by
wound infection and CSF fistula, respectively. Complete re-
section (ie, no residual contrast enhancement in the postop-
erative scan) was achieved in 62 % of all cases, in 93 % of the
patients an EOR > 90 % was accomplished. Of all patients
presenting with neurological impairment, 52 % showed sig-
nificant improvement. Only one patient developed transient
double vision postoperatively, which completely dissipated
after one week. These data confirm that the employment of
advanced pre- and intraoperative technologies allows a safe
and extensive resection in malignant glioma patients with a
low rate of surgical morbidity.
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 Conclusion

Basic science research efforts during the decade of the brain
has created an enormous gain of knowledge regarding func-
tion, biology, and pathophysiology of the brain [42]. This has
caused a shift of paradigm in clinical neurosciences, includ-
ing the surgical treatment of malignant gliomas. The advent of
modern technology has revolutionized the preoperative work-
up, surgical trajectory planning, and intraoperative monitor-
ing with significant benefits for the patients regarding neuro-
functional improvement and overall survival. In the treatment
of malignant glioma, combined efforts of all involved medical
specialties are mandatory to achieve the best results for the
individual patient [43, 44]. Modern neurosurgery can contrib-
ute to this treatment structure by providing maximal EOR
combined with minimal morbidity.
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