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Assessment of Myocardial Perfusion by Contrast
Echocardiography – Ready for Clinical Practice?

St. Kuntz-Hehner1, K. Tiemann1, Th. Schlosser1, H. Omran1, B. Luederitz1, H. Becher2

Increasing interest has been focused on myocardial contrast echocardiography (MCE) since latest ultrasound-specific
imaging modalities allow the detection of ultrasound contrast agents within the myocardium after intravenous injection. Due
to significant improvements in imaging technology MCE has become a valuable add-on tool for the diagnosis of coronary
artery disease.

This review summarizes and estimates the clinical value of recent developments in myocardial contrast echocardiography,
particularly with regard to the new real-time perfusion imaging, which allows simultaneous assessment of perfusion and wall-
motion. J Clin Basic Cardiol 2002; 5: 145–8.
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T he assessment of myocardial perfusion following intra-
venous injection of ultrasound contrast agents (USCAs)

has been a major objective of research in the last two decades.
In the 70s and early 80s, microbubbles of air found applica-
tions in the detection of intracardiac shunts and of valvular
regurgitation [1–3]. A real breakthrough in contrast echo-
cardiography was the discovery by Feinstein et al. [4] that
sonicated human albumine led to small bubbles, which lasted
much longer than any other microbubbles. Sonicated human
albumin (Albunex®) was shown not only to enhance the
right ventricle but also to be stable enough to pass the lung
capillaries and achieve left ventricle opacification [5]. In the
early 90s the third major discovery in the history of USCAs
was the idea of replacing air by perfluorinated halocarbons,
which are known to be well tolerated and to be exhaled un-
changed, improving the resistance against collapse. Stabilization
using variable shell materials, gases and coating substances
improved the properties of USCAs. Four USCAs are approved
and available for clinical use (examples see Table 1) [6–11].

Physical Properties
of Ultrasound Contrast Agents

The physical properties of microbubbles are complex and
depend on a number of factors, of which the most important
is the applied acoustic power, measured by the mechanical
index (MI). At low emission power, USCAs act as linear back-
scatter, increasing the signals received from blood, leading to
the first intended clinical indica-
tion: Doppler signal enhance-
ment.

In addition to these reflector
properties, USCAs act as active
sound sources, emitting non-
linear harmonic frequencies due
to their radial oscillation when
emission power is increased
(acoustic pressure above 0.1 MPa;
MI = 0.1–1.0) [12]. At high emis-
sion power (acoustic pressure
above 1 MPa; MI > 1.0), USCAs
can be destroyed, producing
strong broadband frequency sig-

nals in a process known as stimulated acoustic emission [12–
15].

Triggered Versus Real-Time Imaging
It has been shown that most USCAs are destroyed, at least
partially, even at diagnostic emission power [16]. This effect
may not be apparent in large vessels or in the cardiac cavities
because there is a constant supply of fresh blood containing
fresh microbubbles. However, in small vessels or in vessels
with low flow such as a capillary bed, the bubbles can be de-
stroyed before re-filling the vascular bed. As a consequence,
visualization of USCAs in the microcirculation is difficult
during real-time imaging [15].

To overcome this, intermittent imaging techniques that
limit the time of exposure of microbubbles to the ultrasound
beam have been invented [16, 17]. With this technique, indi-
vidual single-frame images are obtained at designated points
once every cardiac cycle up to triggering intervals every 15th

cardiac cycle, allowing replenishment of the microbubbles
between successive frames (Figure 1). Although the intro-
duction of intermittent imaging has been a breakthrough in
intravenous myocardial contrast echocardiography [16, 17],
there are also disadvantages using this approach. Triggered
imaging is technically demanding and requires a high level of
expertise in acquiring images at the same scan plane for each
triggered interval. Furthermore, simultaneous evaluation of
wall motion cannot be performed.

Table 1. Ultrasound contrast agents for myocardial perfusion

Name Manufacturer Shell of the Gas Approved in Imaging
microbubbles modality

Levovist® Schering (Germany) Palmitate/ Air Canada, TRI
Galactose Europe

Optison™ Mallinckrodt (USA) Albumine Perfluoropentan USA, TRI
Europe RTPI

Sonovue® Bracco (Switzerland) Phospholipid Sulfurhexafluor Europe TRI
RTPI

Definity™ Bristol-Myers Squibb Phospholipid Perfluoropropan USA, TRI
former DuPont (USA) Canada RTPI

TRI = triggered imaging modalities; RTPI = real-time perfusion imaging
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Contrast Specific Imaging Modalities

Development in ultrasound imaging techniques recently
provided a large variety of “contrast specific” imaging
modalities (examples see Table 2), which improved the signal-
to-noise ratio, allowing intravenous myocardial contrast
echocardiography [14].

Harmonic B-mode imaging takes advantage of non-linear os-
cillation of microbubbles. During harmonic imaging, ultra-
sound is transmitted at a fundamental frequency of 1.5 to
2.0 MHz and received at twice this frequency. Using
bandpass filters [18] the transmitted fundamental frequency
is separated from the received signal allowing improved visu-
alization of vascular beds containing USCAs. The signal-to-
noise ratio during the presence of microbubbles in tissue is
four- to fivefold higher at the harmonic compared with the
fundamental frequency [19, 20].

Using harmonic B-mode imaging, harmonic frequencies
generated gradually as the ultrasound wave propagates through
the tissue have to be taken into account [21]. Although tissue
reflection generates very little harmonic energy compared to
USCAs, these tissue harmonics have to be removed by back-
ground subtraction methods for quantitative assessment of
myocardial perfusion [14].

Harmonic power Doppler imaging (H-PDI) has been intro-
duced into echocardiography as a contrast-specific imaging
modality that encodes, in different hues of a color map, the
power of the color Doppler signal after wall filtering. H-PDI
bases on the detection of strong non-linear signals generated
by the microbubbles at the time of their destruction (stimu-
lated acoustic emission), resulting in a phase shift of received
ultrasound waves. Because no Doppler signals are present in
the myocardium prior to injection of USCAs, H-PDI was
recently proposed as a method for quantitative analysis of
myocardial blood flow without the need for background sub-
traction [22–24].

Pulse inversion imaging utilizes characteristics specific to
non-linear microbubble oscillation to subtract rather than to
filter out the fundamental signal. This technique works by
sending two successive ultrasound pulses of the same fre-
quency, waveform and focusing, but with opposite polarities.
The ultrasound system sums the returning fundamental as
well as the harmonic components, resulting in a cancellation
of the fundamental signals, whereas the harmonic compo-
nents are combined and reinforced. Although pulse inversion
imaging lead to increased sensitivity to contrast and produces
images with very high spatial resolution, tissue motion arte-
facts may still be a problem [18, 25, 26].

The latest developments in contrast specific ultrasound
instrumentation are power pulse inversion, power modulation and
coherent imaging that can be performed at low emission power
(MI < 0.15) [27–29]. A sequence of normal and inverted
pulses is transmitted, detecting harmonic signals from
USCAs along with fundamental signals. These signals are
mathematically combined to provide detection of a pure har-
monic signal from the microbubbles allowing complete can-
cellation of the fundamental signals without conventional fil-
ters that would remove valuable signals from USCAs. Using
these low-power technologies the destruction of the micro-
bubbles is reduced allowing real-time imaging (> 20 frames/s).
Even the amplitude of tissue signals can be minimized, thus
myocardial contrast signals can be analyzed without back-
ground subtraction.

Application of Myocardial
Contrast Echocardiography

A large body of experimental and clinical work with intra-
coronary and aortic root injections of USCAs in the 80s and
90s has shown that myocardial contrast echocardiography
(MCE) can be used to assess risk area and infarct size [30, 31],
or to evaluate the presence of collaterals [32]. Besides, intra-
coronary MCE can be utilized to evaluate viable myocardium
after acute infarction [33], to delineate reperfusion reflow
zones [34, 35], or to predict prognosis and functional discov-
ery after revascularization [36]. Due to its invasive character,
intracoronary MCE is only of minor clinical significance.

Recent developments in micro-
bubble technology and ultrasound
imaging techniques improved the
discrimination of microbubble
signals within the myocardium
following intravenous injection. In
animal models triggered intrave-
nous MCE (using increasing trig-
ger intervals at high emission
power) has been validated as a
technique for quantifying myocar-
dial blood flow and assessing the
degree of coronary stenosis [37–
39]. These animal studies led to

Table 2. Imaging modalities for assessment of myocardial perfusion

MI Real-time Residual Need for Endocardial
imaging myocardial background border

tissue signals subtraction delineation

Harmonic B-mode 0.6 No Yes Yes Poor
Power Doppler > 1.0 No Few* No Good
Pulse inversion 0.3 No Yes Yes Moderate
Power pulse inversion < 0.15 Yes No No Good
Power modulation < 0.15 Yes No No Good
Coherent imaging < 0.15 Yes No No Good

MI = mechanical index; * = wall motion artifacts can be minimized with proper machine settings

Figure 1. Different degrees of myocardial contrast using harmonic
power Doppler imaging (four chamber view) during continuous
infusion of Levovist®: Arrival of the contrast agent in the right
ventricle (a) and complete left ventricular opacification shortly after
(b) using triggered imaging every heart cycle (1:1). Complete left
ventricular myocardial opacification using higher trigger intervals
every 3rd (c) and every 5th (d) cardiac cycle.
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the first comparative studies in humans. Kaul
and others [40] demonstrated that MCE could
detect myocardial perfusion at rest and during
dipyridamole stress in humans. The location
and physiological relevance of perfusion de-
fects were similar to that provided by Tc-99m
sestamibi SPECT, with interobserver agree-
ment between the two techniques exceeding
90 %. The study was performed using har-
monic B-mode imaging, therefore the images
had to be digitally subtracted and color coded
before visual analysis of perfusion was per-
formed.

The first multicenter clinical trial of MCE
was reported in 1998, studying the ability of a
second-generation perfluorcarbon USCA to
identify perfusion defects in postmyocardial
infarction patients [41]. The results of this trial
demonstrated limitations in the ability of MCE
to provide data of comparable accuracy to
radionuclide scintigraphy for this application.
On the other hand, this multicenter study
demonstrated that in less experienced hands,
the interpretation of myocardial perfusion with
these advanced ultrasound techniques may not
be as good as in the original pilot studies [18, 42].

This is one of the reasons why none of the introduced
high-power imaging technologies could be established as a
standard for clinical use, primarily because of the practical
limitations of triggered imaging. Technical problems include
transducer and cardiac translation motion during long trig-
gering intervals and the inability to simultaneously assess wall
motion and perfusion.

The introduction of a new generation of contrast specific
imaging technology in 1999 was promising for future clinical
use of intravenous MCE [25, 27]. These low-power tech-
nologies (MI < 0.15) significantly reduce destruction of the
microbubbles, approaching real-time assessment of myocar-
dial perfusion at frame rates up to 30 Hz (real-time perfusion
imaging; RTPI). Furthermore, simultaneous evaluation of
wall motion is possible. The clinical benefit of this approach
has been demonstrated by Porter et al., using power pulse in-
version imaging [29]. This study was performed in 117 pa-
tients during dobutamine stress echocardiography by using
bolus injections of Optison™ or Definity™. Overall agree-
ment between quantitative coronary angiography and myo-
cardial contrast enhancement on a territorial basis was 83 %,
as compared with 72 % for wall motion assessment alone.
Contrast defects were observed in 17 territories subtended by
> 50 % diameter stenoses that had normal wall motion at
peak stress. However, the knowledge of both wall motion and
perfusion seems to be of synergistic value [29, 43]. Moreover,
wall motion analysis may serve as a “back up” if the perfusion
study is not diagnostic [43].

Even quantitative assessment of myocardial perfusion,
that was primarily used in research rather than in clinical set-
tings, seems to be practicable using low-power technologies.
Recently, Wei and colleagues described a technique for quan-
titative assessment of myocardial perfusion during continu-
ous intravenous infusion of USCAs, based on the ultra-
sound-induced destruction of microbubbles and the assess-
ment of their replenishment [39, 44]. The mathematical
model used for non-linear curve fitting to analyze replenish-
ment parameters was originally defined for intermittent
imaging using increasing trigger intervals at high emission
power. Recent animal studies demonstrated that this model
could be applied to real-time perfusion imaging as well. Us-

ing low power techniques, a brief pulse of higher mechanical
index (“flash”, MI > 1.0) is transmitted to clear the myocar-
dium of microbubbles. Returning immediately to low power
real-time imaging, reperfusion may be visualized, further of-
fering the opportunity to quantify the flow velocity and the
blood volume at the level of microcirculation non-invasively
(see Figure 2) [45, 46].

Conclusion
Perfusion abnormalities develop earlier than abnormalities of
the wall motion in the region subtended by a significant coro-
nary stenosis. Thus, MCE provides valuable additional infor-
mation approaching the pathophysiologic substrate of ischae-
mia. The clinical application of MCE in daily routine de-
pends on additive diagnostic information compared to con-
ventional stress echocardiography. Outcome-studies have to
demonstrate the prognostic relevance of MCE findings in
order to establish this new method.
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