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HMG-CoA Reductase Inhibition in the Treatment
of Atherosclerosis: Effects Beyond Lipid Lowering

W. März1, B. R. Winkelmann2

Abstract: Treatment with HMG-CoA reductase inhibi-
tors (statins) has proven the most successful strategy
to reduce the concentration of LDL in the circulation.
These compounds lower LDL cholesterol by inhibiting
the mevalonate pathway in the liver, which in turn de-
pletes the regulatory pool of cholesterol and enhances
the activity of LDL receptors. Six prospective clinical
trials have convincingly demonstrated that HMG-CoA
reductase inhibitors can effectively lower the inci-
dence of cardiovascular events in primary and second-
ary prevention. Post hoc analyses of these trials sug-
gest that the clinical benefit brought about by HMG-
CoA reductase inhibitors may not entirely be due to
their effect on the levels of circulating lipoproteins. A
host of actions of statins on the vascular wall including
improvement of endothelial function, anti-oxidative,
anti-inflammatory, plaque-stabilizing, and anti-coagu-
lant effects have been advocated to explain effects be-
yond lipid-lowering. LDL are known to impair endothe-
lial dysfunction, produce pro-inflammatory and pro-
thrombotic responses of cellular elements, and cause
plaque destabilization on their own.

It is hence not entirely clear to which extent the
pleiotropic effects of statins contribute to the overall

efficacy of these compounds. Further investigation is
therefore necessary in order to determine the relative
significance of cholesterol lowering and of ancillary
effects on the net clinical benefit of statin treatment.
Finally, it is an emerging clinical issue whether or not
statin treatment would yield short-term benefit in the
management of acute coronary syndromes.

Kurzfassung: HMG-CoA-Reduktasehemmer in der
Behandlung der Atherosklerose: Effekte jen-
seits der Lipidsenkung. Die Behandlung mit HMG-
CoA-Reduktasehemmern ist die bisher erfolgreichste
Strategie zur Verminderung des LDL-Cholesterins.
HMG-CoA-Reduktasehemmer vermindern das LDL-
Cholesterin, indem sie den Mevalonat-Stoffwech-
selweg in der Leber hemmen, den Gehalt an regula-
torisch aktivem Cholesterin vermindern und als Folge
die Aktivität des LDL-Rezeptors steigern. Sechs pro-
spektive klinische Studien haben überzeugend ge-
zeigt, daß HMG-CoA-Reduktasehemmer effektiv die
Häufigkeit kardiovaskulärer Ereignisse in der primä-
ren und sekundären Prävention reduzieren. Post-hoc-
Analysen dieser Studien legen nahe, daß der klini-
sche Nutzen der HMG-CoA-Reduktasehemmer nicht

Introduction

Atherosclerosis continues to be a major health care challenge.
Despite intensive basic and clinical research, atherosclerosis is
a complex process that has yet to be fully understood. One of
the most recent advances in the treatment of atherosclerosis is
the use of HMG-CoA reductase inhibitors (statins). Evidence
from major trials convincingly shows that statins can effectively
reduce the incidence of coronary heart disease (CHD) and
stroke [1–5]. With the completion of these trials and results
from further basic research, there is a growing body of evidence
that the effects of some statins go beyond their cholesterol-low-
ering effects [6]. This article will critically evaluate the extent to
which effects of statins may be due to modulation of endothelial
function, antioxidant, anti-inflammatory, or anti-thrombotic
properties of these compounds.

Endothelial Dysfunction, Lipid Deposition,

and Inflammation are Major Hallmarks of

Atherosclerotic Lesions

According to the modified response-to-injury concept [7], the
earliest manifestation of atherosclerosis is endothelial dys-
function. Well-established causes of endothelial dysfunction

alleine auf ihren Effekt auf die Lipoproteine des Plas-
mas zurückzuführen ist. Inzwischen ist eine Vielzahl
von Wirkungen der Statine auf die Gefäßwand be-
kannt, darunter eine Verbesserung der Endothelzell-
funktion, antioxydative, antientzündliche, plaquesta-
bilisierende und antikoagulatorische Wirkungen, mit
denen man die über die Lipidsenkung hinausgehen-
den Effekte erklärt. Von den LDL selbst ist aber be-
kannt, daß sie die endotheliale Funktion beeinträch-
tigen und proinflammatorische bzw. prothrombo-
tische Funktionsveränderungen der Gefäßwand indu-
zieren und damit eine Destabilisierung von Plaques
hervorrufen. Aus diesem Grund ist der Anteil, mit
dem die pleiotropen Effekte der Statine zum gesam-
ten klinischen Nutzen dieser Substanzklasse beitra-
gen, unklar. Weitere Untersuchungen sind daher not-
wendig, um die relative Bedeutung der Cholesterin-
senkung und der zusätzlichen Effekte für die klinisch
beobachtete Prognoseverbesserung unter Statinbe-
handlung herauszuarbeiten. Darüber hinaus wird zu
untersuchen sein, ob die Behandlung mit Statinen
auch einen kurzfristigen Nutzen bei Patienten mit
akutem Koronarsyndrom zeitigt. J Kardiol 2002; 9:
284–94.
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include dyslipidemia, insulin resistance, diabetes mellitus,
free radicals produced by cigarette smoking, hypertension,
and elevated homocysteine concentrations. Almost independ-
ent from specific noxious agents, the dysfunctional endothe-
lium is characterised by an enhanced expression of membrane
molecules (E-selectin, intercellular adhesion molecule, ICAM,
and vascular cell-adhesion molecule, VCAM) that facilitate
the adhesion of platelets, monocytes, and T-cells. Further-
more, irritation of endothelial cells shifts the balance of pro-
and anticoagulant factors towards coagulation, and the avail-
ability of nitric oxide is compromised, resulting in impaired
endothelium-mediated vasodilation. As atherosclerosis pro-
gresses, the numbers of monocyte-derived macrophages, T-
lymphocytes and even mast cells in the lesions increase, and
growth factors and chemokines – released by platelets, en-
dothelial cells and macrophages – stimulate the penetration of
smooth muscle cells from the media into the intima. Macro-
phages accumulating large amounts of lipids are themselves
activated and eventually undergo necrosis or apoptosis. This
transforms the lesion into a complex one characterised by a
core of extracellular lipid deposits and cell debris [8], which is
separated from the vessel lumen by a fibrous cap containing,
in varying proportions, smooth muscle cells, T-lymphocytes
and mast cells. Smooth muscle cells exclusively account for
the production of matrix components, which strengthen the
cap. T-cells, macrophages and mast cells in contrast, are
thought to disintegrate the fibrous cap. Activated macro-
phages do so by releasing metalloproteinases, a group of pro-
teolytic enzymes cleaving components of basement mem-
branes and extracellular matrix constituents [9]. T-cells con-
tribute to the weakening of the fibrous cap by secreting inter-
feron-gamma, which down-regulates collagen synthesis in
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smooth muscle cells [10] and (in combination with IL-1β and
TNF-alpha originating from macrophages) may even induce
apoptosis in these cells [11]. The ratio of smooth muscle cells
and matrix on the one hand and lipid deposits and inflamma-
tory cells on the other hand is believed to determine the stabil-
ity of a lesion. Lesions containing a thin fibrous cap are prone
to rupture, an event, which brings platelets from the circulat-
ing blood into contact with activated macrophages residing
within the lipid core, thereby initiating local thrombosis. Not
surprisingly, the risk of vascular events in patients with stable
atherosclerotic plaques is lower than in those with unstable
plaques [9].

What Is The Evidence in Humans That

Statins Have Effects Beyond Cholesterol

Lowering?

To date, six large statin trials have been completed in primary
or secondary prevention. The evidence from these trials has
been unequivocal in demonstrating the efficacy and safety of
statins in reducing cardiovascular morbidity and mortality.
The statin trials included a broad range of patients with differ-
ent cardiovascular risk at baseline. AFCAPS/TexCAPS [1]
and WOSCOPS [5] were primary prevention studies in pa-
tients with low to moderate risk of CHD. The Heart Protection
Study (HPS) examined the effectiveness of simvastatin, with
and without antioxidant vitamin supplementation, on total
mortality and cause-specific mortality in subjects with coro-
nary heart disease, peripheral vascular disease or stroke, dia-
betes mellitus, and treated hypertension [12]. CARE [4] and
LIPID [3] included patients with previous MI or unstable an-
gina, respectively, with average cholesterol levels, while the
Scandinavian Simvastatin Survival Study (4S) [2] was a sec-
ondary prevention study in patients with CHD and elevated
cholesterol levels. In each of these studies, treatment with
statins reduced major cardiovascular events, relative risk re-
ductions ranging between 24 and 40 percent, with reductions
in absolute risk ranging from 3 to 10 percent.

Post-hoc subgroup analyses of some of these trials raised
questions about the effects of statins beyond cholesterol lower-
ing. Specifically, in WOSCOPS the following questions were
addressed: 1) Is it possible to predict the cardiovascular event
rates in the pravastatin-treated patients by means of lipid
changes using a risk assessment algorithm derived from the
Framingham study? and 2) If the clinical benefit was due to li-
pid-lowering alone, do placebo and statin patients with similar
attained LDL cholesterol levels then have similar event rates?

Intriguingly, in the first analysis [13], patients receiving
pravastatin experienced greater benefit in WOSCOPS than
predicted by the Framingham risk model (based on the lipid
changes achieved by pravastatin in the study): Whereas the
predicted risk reduction in pravastatin patients was 24 %, the
observed risk reduction was 35 %. This difference was statis-
tically significant. The second analysis [13] showed a consid-
erable overlap of on-treatment LDL cholesterol levels in the
placebo and in the verum group. In total, approximately 1,100
patients in each treatment arm had LDL cholesterol levels in
the range of 140 to 180 mg/dl (3.26 to 4.65 mmol/l). Mean
LDL cholesterol in the placebo group was 170 mg/dl (4.38
mmol/l) and 159 mg/dl (4.10 mmol/l) in the pravastatin group.

When the pravastatin patients were compared with placebo
patients who had similar LDL cholesterol, the pravastatin
group had a significantly 36 % lower risk of cardiovascular
events. Together, these results suggest that lipid changes
brought about by the study medication may not fully account
for the net clinical benefit seen in WOSCOPS.

Results from the angiographically controlled statin trials
also demonstrated risk reduction without substantial regres-
sion of atherosclerotic plaques. In the Pravastatin Limitation
of Atherosclerosis in the Coronary Arteries (PLAC) I and the
Regression Growth Evaluation Statin Study (REGRESS),
there was a statistically significant event reduction even
though the trials were of short duration. An additional obser-
vation from many of these trials was that the degree of LDL-C
lowering did not correlate with coronary event reduction [14].

Further arguments for non-lipid mechanisms of statin ac-
tion relate to the unexpected reduction of stroke observed in
the large statin trials. In contrast to hypertension [15], choles-
terol is not a major risk factor of stroke in prospective studies,
at a first glance suggesting that cholesterol lowering would
yield no benefit in the prevention of stroke. Consistently, nei-
ther fibrates, resins nor lipid-lowering diet clearly prevent
stroke. However, an approximately 24 percent reduction of
stroke incidence is seen in trials of statins [16].

Statin Treatment Improves Endothelial

Function and Vasoreactivity

Hypercholesterolaemia is a pivotal pathogenic factor of endo-
thelial dysfunction. The mechanism by which low density
lipoproteins (LDL) modify endothelial function has not
completely been elucidated. Atherogenic lipoproteins and in
particular its modified derivatives profoundly affect the
function of endothelial cells. In addition to diminishing the
production [17] and accelerating the decay of nitric oxide
[18], oxidised LDL enhance the expression of adhesion
molecules (E-selectin, VCAM-1, ICAM-1), of macrophage
colony stimulating factor (M-CSF) [19], monocyte chemo-
attractant protein-1 (MCP-1) [20], transforming growth
factor-beta, and of tissue factor (TF) [21] in endothelial cells.
Remnants derived from the incomplete catabolism of trigly-
ceride-rich lipoproteins (chylomicrons and LDL) behave much
the same as LDL or modified LDL [22], possibly linking
delayed clearance of triglyceride-rich lipoproteins to endo-
thelial dysfunction. In genetically modified mice that are
deficient in apolipoprotein E (and have hypercholesterol-
aemia), the expression of ICAM-1 on the surface of the endo-
thelium is increased at lesion-prone sites [23], and VCAM-1,
which is absent in normal mice, is expressed at the same sites as
ICAM-1 in mice with apolipoprotein E deficiency [23]. Similar
findings were reported in hypercholesterolaemic rabbits [24].

Clinical studies have demonstrated that statins improve en-
dothelial function [25–29] and myocardial perfusion [30–35].
Interestingly, Mellwig et al. using positron emission tomo-
grapgy (PET) to assess coronary blood flow showed that abrupt
reduction in LDL cholesterol by a single LDL apheresis im-
proved myocardial perfusion overnight [36]. Consistently, a
single session of LDL apheresis significantly augmented en-
dothelium dependent vasodilatation, also emphasizing the sig-
nificance of LDL cholesterol reduction itself [37].
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In an attempt to clarify whether or not improvement of
endothelial function was related to cholesterol-lowering,
Williams and colleagues [29] administered pravastatin to cy-
nomolgus monkeys previously fed an atherogenic diet for two
years, followed by a lipid-lowering diet either containing (n =
14) or not containing (n = 18) pravastatin for an additional two
years. The lipid content in the diet of these animals was ad-
justed to produce exactly the same plasma cholesterol, LDL
cholesterol and high density lipoprotein concentrations as in
control animals not receiving pravastatin. Examination of en-
dothelial function at the end of the treatment phase revealed
that coronary arteries of pravastatin-treated monkeys dilated
in response to acetylcholine, whereas those from untreated
control monkeys showed considerable vasoconstriction, de-
spite identical lipid concentrations.

One of the major functions of the vascular endothelium is
the generation of the endogenous vasodilator nitric oxide
(NO). In endothelial cells (ECs), NO is produced from L-ar-
ginine by the constitutive endothelial nitric oxide synthase
(eNOS). Enhanced bioavailability of NO is probably respon-
sible for the improvement of endothelial dysfunction during
statin therapy, as the effect of statins on acetylcholine-medi-
ated stimulation of blood flow is blunted by co-administration
of L-NMMA, an inhibitor of endothelial NO production [38,
39].

Lovastatin and simvastatin were shown to enhance NO pro-
duction in human saphenous vein-derived endothelial cells by
stabilizing the mRNA for eNOS [40]. This was proposed to
translate into increased cerebral blood flow, reduced cerebral
infarct and ameliorated neurological function in a mouse
model of cerebral ischaemia. The effect was independent of
cholesterol and was completely abolished in mice genetically
deficient in eNOS [41, 42] (Figure 1). These findings may
help to explain the beneficial effects of statins in the preven-
tion of stroke, which is unexpected in the view of the fact that
prospective studies failed to establish a relationship between
cholesterol and the incidence of stroke [14, 16].

The mechanisms by which statins enhance NO production
are still not entirely clear. Through their inhibitory effect on
the mevalonate pathway, statins decrease the availability
of farnesylpyrophosphate and geranylgeranylpyrophosphate.

Changes in the concentration of eNOS mRNA were observed
after incubation of endothelial cells with lovastatin or simva-
statin for 24 hours or longer, a period of time which is suffi-
ciently long to allow for inhibition of the geranylgeranylation
of the small GTP binding protein rho. As rho enhances the de-
cay of eNOS mRNA, the effects of lovastatin and simvastatin
on eNOS stability were ascribed to inhibition of rho function
[40, 43, 44].

Recently, an alternative mechanism relating the cellular
sterol homoestasis to post-translational regulation of eNOS
activity has been identified. Immediate activation of eNOS
can result from interaction with calmodulin in the presence of
Ca2+ [45]. The binding of calmodulin to eNOS is antagonized
by caveolin-1 [46–48]. The caveolin promoter contains two
sterol regulatory element-like components that mediate inhi-
bition of caveolin transcription upon binding of sterol regula-
tory element binding protein-1 (SREBP-1) [49]. Caveolin-1
expression is thus enhanced by free cholesterol [50]. As ex-
pected, exposure of endothelial cells to LDL inhibits basal and
stimulated NO release [51] and atorvastatin, by virtue of its
ability to decrease the cellular content of sterols, reduces
caveolin-1 abundance and promotes basal and agonist-stimu-
lated eNOS activity [52].

Pravastatin has been reported to be roughly twice as effec-
tive in stimulating the formation of NO than simvastatin at the
same molar concentration [53]. It is, however, unlikely that
pravastatin acts by down-regulating rho function or caveolin
expression. Pravastatin, the most hydrophilic among the cur-
rently available statins, is taken up into cells by an active
transport process involving a sodium-independent bile acid
transporter which is exclusively expressed on the surface of
hepatocytes [54]. Hence pravastatin poorly penetrates non-he-
patic cells and does not substantially compromise the genera-
tion of isoprenoid intermediates of the mevalonate pathway
like farnesyl and geranylgeranyl pyrophophosphate in these
cells. Pravastatin (and simvastatin) enhanced NO release as
early as after eight minutes of exposure of aortic rings to the
compounds [53], a period of time too short to modify the cel-
lular sterol pool or the function rho. It is therefore likely that
different mechanisms exist by which statins enhance the gen-
eration of NO.

It has been shown that eNOS is activated by
phosphorylation of serine 1179 [55–59]. Phos-
phorylation of eNOS at serine 1179 is mediated
by an activation of the phosphatidylinositol-3-
OH-kinase (PI(3)K) and Akt (protein kinase B)
pathway of signal transduction [58, 59]. To exam-
ine whether statins might affect eNOS activity
through phosphorylation, we incubated ECs with
32P-phosphoric acid in the presence or absence of
pravastatin (10–5 M) or simvastatin (10–5 M) for 3
h and measured radioactivity associated with
immunoprecipitated eNOS. These experiments
showed that both pravastatin and simvastatin
stimulated eNOS phosphorylation by more than
200 %, and Ly294002, a specific inhibitor of
phosphatidylinositol-3-OH-kinase blunted the re-
lease of NO into the culture medium [März et al.
unpublished]. Thus, it seems likely that statins ac-
tivate phosphatidylinositol-3-OH-kinase leading
to the phosphorylation of the protein kinase Akt

Figure 1: Left panel: Effect of increasing doses of simvastatin administered for two weeks on the
volume of cerebral infarcts and a neurological sensory-motor score in mice induced by occlusion of
the main carotid artery. Right panel: The effect is abolished in mice lacking endothelial nitric oxide.
Modified according to Endres et al. [41].
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and, consecutively, of ecNOS. Together three synergistic
pathways are thus emerging which might explain the benefi-
cial effects of statins of NO production.

Beyond disturbances of the L-arginine and NO pathway an
excess of endothelin-1 has been implicated in endothelial dys-
function associated with atherosclerosis. Endothelin-1 is is a
21 amino acid peptide, produced stepwise by proteolytic
cleavage of pre-pro endothelin-1 and big endothelin. It is
among the most effective vasoconstrictors known so far. In
bovine aortic endothelial cells, atorvastatin and simvastatin in-
hibited pre-pro endothelin-1 mRNA expression reduced im-
munoreactive endothelin-1 levels, effects which were main-
tained in the presence of oxidized LDL [60]. In vivo, however,
statin treatment has so far not been shown to lower ET-1 con-
centrations [28].

In view of their distinct vascular effects statins might in the
future attain a role as adjunctive therapeutics in the manage-
ment of hypertension. Small studies indicating that blood
pressure reduction was more effective in patients receiving a
statin on top of an angiotensin converting enzyme (ACE) in-
hibitor than in those receiving an ACE inhibitor alone have
previously been reported [61–63]. It is in line with these obser-
vations that statin treatment decreases the responsiveness to
vasoconstrictors in patients with hypercholesterolaemia.
Straznicky et al. [64] found that the amounts of norepine-
phrine and angiotensin II required to raise diastolic blood
pressure by 20 mmHg was significantly higher than during
treatment with pravastatin than before, and Nickenig and col-
leagues provided evidence that overexpression of angiotensin
II type 1 receptors in hypercholesterolaemia [65] was reversed
by treatment with statins [66].

����� Are Statins Antioxidants?

LDL isolated from patients receiving statins [67–72] are less
susceptible to oxidative modification in vitro. One of the pri-
mary effects of statins on lipoprotein metabolism is that they
enhance the turnover of LDL. Since the residence time of LDL
in the plasma is inversely related to its susceptibility to oxida-
tion, an increase in the resistance of LDL to oxidation may be
secondary to the acceleration of the metabolism of LDL. How-
ever, statins may also have direct antioxidative properties. This
has been shown for simvastatin [72, 73], fluvastatin [70, 74],
but apparently does not apply to pravastatin, a hydrophilic
compound [74]. Aviram et al. [75] reported that para- and
ortho-hydroxymetabolites of atorvastatin, but not the parent
compound, protected LDL, HDL and HDL associated para-
oxonase against oxidation. The relevance of these findings to
the situation in vivo, however, is not clear. In vitro, statins have
substantial anti-oxidative effects at concentrations that are
hardly reached systemically (i.e.10–5 mol/l and more). Of fur-
ther interest, LDL from patients treated with pravastatin re-
veals reduced susceptibility to oxidation ex vivo [69], albeit
pravastatin is ineffective as an antioxidant in vitro [74]. This
discrepancy may point at the importance of an enhanced
turnover of LDL as a major determinant of LDL oxidizablity
ex vivo. Finally, the negative results of prospective trials [76]
looking at the effect of antioxidant vitamins on clinical events,
make it unlikely that any anti-oxidative properties of statins
contribute to their clinical efficacy.

����� Statin Treatment Has Anti-Inflammatory

Effects

Recent years have seen approaches to redefine atherosclerosis
as a chronic inflammatory process. In fact, atherosclerosis
shares many characteristics with chronic inflammatory dis-
eases like cirrhosis, rheumatoid arthritis or glomeruloslerosis
[7]. It is consistent with the concept of atherosclerosis as an
inflammatory disease, that systemic markers of inflammation
such as leukocyte count, fibrinogen, C-reactive protein (CRP)
[77], serum amyloid A (SAA), soluble ICAM-1 [78] or
interleukin (IL)-6 [79] are predictive of clinical events of car-
diovascular disease in patients with stable or unstable coro-
nary disease, and perhaps more important, in individuals not
yet having experienced a clinical event.

Disturbances of lipoprotein metabolism may themselves
trigger inflammatory processes. Interestingly, CRP has been
shown to complex to enzymatically modified LDL, thus pro-
moting the uptake of cholesterol into macrophages and the
generation of foam cells in atherosclerotic lesions [80].
Zwaka and colleagues could demonstrate the potential role of
CRP in mediating the uptake of native LDL by macrophages.
This process seems to depend on the activity of a specific
CRP-receptor on the macrophage surface, FC-gammaRIIA
[81]. These latter findings are remarkable because the do not
require any kind of oxidative modification of LDL particles to
explain deposition of LDL derived lipids in macrophages,
thus providing an additional link between circulating
lipoproteins and inflammatory responses at the level of the
vessel wall.

The anti-atherogenic effects of high density lipoproteins, in
contrast may in part come from anti-inflammatory actions.
Paraoxonase, which is transported as a component of HDL
inhibits the oxidative modification of LDL [82, 83]. Lipids
oxidized in LDL can be transferred to HDL by cholesteryl es-
ter transfer protein (CETP) [84]. Once these lipids have be-
come components of HDL, they can be reduced by the forma-
tion of methionine sulphoxides in apo A-I and apo A-II [85].
HDL has been shown to inhibit platelet activation [86], bind
and neutralize pro-inflammatory lipopolysaccharides [87],
and to inhibit expression of adhesion molecules in endothelial
cells [88–92].

A substudy of the CARE trial examined two markers of
inflammation, CRP and SAA, to evaluate the relationship be-
tween pravastatin, inflammation, and the risk of recurrent
coronary events. Pre-treatment levels of CRP and SAA were
measured in 391 patients who developed a recurrent non-fatal
Ml or a fatal coronary event. This group was compared to a
control group consisting of 391 gender-matched patients who
remained event- free. Levels of CRP and SAA were signifi-
cantly higher among subjects with recurring events than in
control subjects. Further, 708 of the 782 participants had
plasma levels of both CRP and SAA above the 90th percentile
cut points for each parameter, or below. These 708 subjects
with concordant CRP and SAA levels were divided into 4
groups based on the levels of both markers and based on
randomisation to pravastatin or placebo (Figure 2). Upon
analysis according to treatment (pravastatin or placebo), a sig-
nificant relationship was seen between the presence of inflam-
mation (elevation of both CRP and SAA) and coronary risk of
patients randomised to placebo. This association, however,
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was attenuated and no longer significant in those patients
randomized to pravastatin. In patients with signs of systemic
inflammation, the relative risk reduction by pravastatin was
approximately twice as large as in the group without elevated
markers of inflammation, thus raising the possibility that
pravastatin has anti-inflammatory effects beyond lipid lower-
ing [93].

Most recent data from the AFCAPS/TexCAPS trial in pri-
mary prevention showed that lovastatin also effectively re-
duced cardiovascular endpoints in individuals with LDL cho-
lesterol above 150 mg/dl, with or without elevated CRP
(above 1.65 mg/L). Interestingly, lovastatin was equally effec-
tive in reducing clinical endpoints in those with high CRP but
with LDL cholesterol levels less than 150 mg/dl [94].

In additional analyses the CARE investigators examined
whether pravastatin treatment could actually lower CRP long-
term [95]. CRP was measured at baseline and at 5 years in
another 472 participants of CARE who remained free of re-
current coronary events during follow-up. Statistically signifi-
cant differences were observed at 5 years between the prava-
statin and placebo groups in mean and median CRP levels
(Figure 2). Of interest, these effects persisted after adjustment
for confounders like age, body mass index, smoking status,
blood pressure, and baseline lipid levels, and there was no cor-
relation between the changes in CRP and changes in LDL cho-
lesterol.

These results were recently confirmed prospectively in the
Pravastatin Inflammation/CRP Evaluation (PRINCE) study
[96], which included 1702 individuals without history of car-
diovascular disease and 1182 patients with known cardiovas-
cular disease. Pravastatin given at 40 mg daily reduced CRP
roughly 15 percent. Remarkably, there was virtually no corre-
lation of the changes in CRP with any of the lipoprotein levels
examined (i.e. LDL cholesterol, HDL cholesterol and
triglycerides). A smaller trial also showed that statin treatment
lowers CRP [97].

Further arguments for an anti-inflammatory effect of statins
come from clinical observations in transplant recipients. In
heart and kidney allograft recipients, pravastatin reduced both
the incidence of acute rejection episodes, the development of
transplant vasculopathy, at the same time lowering natural
killer cells in vivo [98, 99]. Similar results could be achieved
with simvastatin [100].

Together, these observations may point to the existence of
anti-inflammatory properties of statins. Nevertheless the data
should be interpreted with caution. As mentioned above,
atherogenic lipoproteins, in particular LDL, represent potent
pro-inflammatory stimuli, and it would not be surprising if
measures effectively lowering the concentrations of these
lipoproteins normalise systemic inflammation markers. The
absence of a correlation between LDL cholesterol changes
and CRP [95] does not completely rule out such relationship.
There is considerable biological variation of CRP at concen-
trations below 10 mg/l, which makes it difficult to detect such
a link by statistical means. Finally, it would lend further sup-
port to the contention of a direct anti-inflammatory effect of
statins if other markers of inflammation (white blood cells,
SAA, IL-6) behaved similar to CRP during statin treatment;
and if it could be shown that statins lower CRP by affecting
the inflammatory reactions in the vessel wall, rather than
merely modulating hepatic CRP synthesis. It is of interest in
this respect, that statin treatment did not affect IL-6 levels and
soluble IL-6 receptor levels in the study by Jialal et al. [97]
and that in patients with familial hypoercholesterolaemia, li-
popolysaccharide-induced release of cytokines (including
interleukin 1a, interleukin 1β, interleukin 6, and tumor necro-
sis factor α) from peripheral blood mononuclear cells was not
altered by simvastatin or atorvastatin [101]. One communica-
tion reporting diminished cytokine production during prava-
statin administration included six patients only and might
hence be inadequately powered [102].

HDL opposes many of the pro-inflammatory effects of
LDL, and statins have consistently been shown to increase
HDL cholesterol. In a recently published small study of
simvastatin and atorvastatin [103] decreases of CRP were sig-
nificantly associated with changes in HDL cholesterol (r =
–0.45) and apolipoprotein A-I (r = –0.40), but not with
changes in LDL cholesterol or triglycerides. The change in
HDL cholesterol explained 20 percent of the change in CRP
during statin treatment, raising the possibility that anti-in-
flammatory properties of statins might stem from their effect
on HDL rather than on LDL metabolism. Results of other re-
cently published studies, however, argue against this hypoth-
esis [96, 104]. In the study of patients with combined hyper-
lipidaemia by Jialal et al. [97], CRP reduction was unrelated
to changes in both LDL cholesterol and HDL cholesterol. A

A B
Figure 2: Pravastatin and C-reactive protein. A. Relative risks of recurrent coronary events in patients with previous MI in the CARE trial according to the presence (both C-
reactive protein and serum amyloid A (> 90th percentile) or absence of systemic inflammation and according to treatment group [93]. B. C-reactive protein in a subset of 472
participants of the CARE study who remained free of coronary event during the trial. Left panel: Median and mean values at baseline and at 5 years of follow-up. Right panel:
Mean changes over time stratified according to changes in LDL cholesterol in the placebo and in the pravastatin group. Modified according to [95].
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strong correlation (r = 0.59) was, however, seen between the
changes of triglycerides and CRP, alluding to the possibility
that triglyceride-rich particles contribute to the inflammatory
processes in patients at high risk of coronary events.

An attempt to dissociate lipid and non-lipid anti-inflamma-
tory effects of pravastatin on atherosclerosis was made in the
study by Williams and colleagues [29]. Cynomolgous mon-
keys received an atherogenic diet for two years, followed by a
lipid-lowering diet either containing or not containing
pravastatin for an additional two years. Diets were adjusted in
order to produce identical plasma total cholesterol, LDL and
HDL cholesterol concentrations in both groups during the
treatment phase. Histochemical analysis of atherosclerotic le-
sions indicated that arteries from pravastatin-treated monkeys
had significantly less macrophages in the intima and media,
and also less calcification and neovascularization in the in-
tima, despite similar lipoprotein concentrations in both
groups.

A host of laboratory data has become available during re-
cent years supporting direct immunomodulatory effects of
statins. Lovastatin inhibits the proliferation of mitogen-stimu-
lated T-lymphocytes [105, 106] and natural killer cell cytotox-
icity [107–109]. Statins may also have a role in immunomo-
dulation by virtue of their ability to repress the induction of
the class II major histocompatibility (MHCII) complex in an-
tigen presenting cells. MHCII is a heterodimer of two peptide
chains, alpha and beta. In antigen presenting-cells, peptides
derived from the proteolysis of antigens are complexed to
MHCII and the resulting heterotrimeric complex is then
translocated to the cell surface where it activates T-lympho-
cytes via interaction with the T-cell receptor. Very recent evi-
dence indicates that statins inhibit the expression of MHCII
induced by IFN in primary cultures of human macrophages,
endothelial cells and smooth muscle cells. No such effect was
seen in cell types constitutively expressing MHCII such as B
lymphocytes. A detailed analysis of the underlying molecular
mechanism revealed that statins down-regulated the non-DNA
binding MHCII transactivator CIITA by inhibiting promoter
IV. The effects of statins on MHCII were alleviated by supple-
mentation with mevalonate, suggesting that promoter IV
function depends on the geranylgeranylation or farnesylation
of proteins [110].

In endothelial cells, pravastatin, simvastatin, fluvastatin,
and cerivastatin significantly reduced the expression of IL-1β,
IL-6, cyclooxygenase-2, and p22phox and p47phox subunits
of nicotine adenine dinucleotide phosphate (NADPH) oxidase
[111]. This study by Inoue and colleagues bears a further in-
teresting aspect, namely that all statins tested induced peroxi-
some proliferator-activated receptor alpha (PPAR-α) and
PPAR-γ mRNA and protein levels in both endothelial cells
and hepatocytes. Since PPAR-α activation has been shown to
up-regulate the NF-κB inhibitor Ik-Ba [112, 113], reduction
of NF-κB activity by statins might thus be mediated by PPAR-α.
Metabolic links between HMG-CoA reductase inhibition and
activation of PPARs might also explain some of the yet unex-
plained metabolic effects of statins such as the increase in he-
patic apo A-I production and a decreased incidence of type 2
diabetes occurring during treatment with statins [114].

Additional evidence for anti-inflammatory effects of
statins also comes from a variety of studies in experimental
animals [115–122] and cell models [123–127].

Most of these effects are unlikely to be related to changes in
plasma cholesterol [117, 119, 121]. Cholesterol represents the
end product of the mevalonate pathway [128]. This pathway
yields a series of intermediate isoprenoid compounds, includ-
ing farnesyl and geranylgeranyl pyrophophosphate. Nor-
mally, these intermediates are covalently attached to GTP pro-
teins involved in cellular signal transduction and proliferation.
Complete inhibition of HMG-CoA reductase will, therefore,
interfere not only with the synthesis of cholesterol but also
with the provision of mevalonate-derived compounds essen-
tial to cellular functions [128]. In vitro, anti-inflammatory and
immune-modulatory effects of statins could be reverted by
provision of mevalonate, suggesting that the depletion of
mevalonate-derived intermediates is crucial [110, 117, 124,
126]. It is, however, an open question whether significant
shortage of mevalonate derived products can be produced in
non-hepatic tissues in humans. Concentrations of statins
needed to compromise farnesylation and geranylgeranylation
of proteins are probably much higher than those needed to re-
duce cholesterol biosynthesis because enzymes at the branch-
points to non-sterols have lower Michaelis constants than
those involved in sterol production [129]. In addition, if
enough sterols (provided by LDL) are available to the cell,
enzymes serving the production of sterols distal to mevalonate
are suppressed so that mevalonate is mainly diverted to non-
sterol pathways. Together, these considerations could explain
why anti-proliferative or anti-inflammatory actions of statins
are usually not observed below 10–6 mol/l in vitro. Such con-
centration is hardly reached in humans on standard doses of a
statin, in particular because of the almost complete hepatic
first-pass extraction after oral dosage.

Weitz-Schmidt et al. [130] showed that statins inhibit
leukocyte function antigen-1 (a heterdimer of CD11a and
CD18, known as aM-β2), which is also involved in binding to
ICAM-1. Intriguingly, the effect was independent from inhi-
bition of HMG-CoA reductase and was mediated by direct in-
teraction of statins with an allosteric site within LFA-1 on the
cell membrane. Based on detailed structural information on
the statin binding pocket on the LFA-1 molecule, a derivative
compound was designed, which was more potent in inhibiting
LFA-1 function, but less potent in inhibiting sterol synthesis.

Statins obviously have the capacity to modulate the inflam-
matory response of the vessel wall, either by virtue of their
cholesterol-lowering effect or due to direct immuno-modula-
tion. It remains an open question whether or not individuals
with elevated CRP should be treated with statins irrespective
of their cholesterol levels in the primary prevention of coro-
nary disease.

����� Statin Treatment Stabilizes Vulnerable

Plaques

The salient features of vulnerable lesions include vast lipid de-
posits, an increased number of inflammatory cells, few
smooth muscle cells, and a thin fibrous cap. As expected, low-
ering LDL cholesterol therapy depletes lipids from vulnerable
plaques [131]. Of interest is, however, the question whether
this is merely a consequence of systemic lipid-lowering or
whether statins are capable of actively modifying the lipid
balance of the vessel wall.
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Lipid deposits of unstable lesions originate from degener-
ated or apoptotic foam cells. For more than two decades, re-
search has focused on the question how macrophages accumu-
late cholesteryl esters derived from LDL. Macrophages incu-
bated with native LDL do not accumulate lipids, and lipid
storage is seen in vascular macrophages of patients com-
pletely deficient in LDL receptors. These observations ex-
cluded LDL receptors from being involved in foam cell for-
mation. In 1979, Goldstein and Brown demonstrated that LDL
previously modified by acetylation was avidly taken up into
monocyte-derived macrophages [132, 133]. The receptors
mediating this process were named scavenger receptors. In
contrast to LDL receptors, the activity of scavenger receptors
is not subject to feedback regulation by the cellular content of
sterols, thus allowing for nearly unlimited influx of lipids. It is
now known that there are many membrane molecules having
broad and partially overlapping ligand specificities, which can
all assume the function of scavenger receptors. Equally im-
portant, not only acetylation, but a series of other modifica-
tions have been recognized to convert LDL into ligands of the
scavenger pathway. These include modification with malon-
dialdehyde [134], oxidation [135] mediated by cellular lipo-
xygenases and phospholipases, glycation, incorporation into
complexes with immunoglobulins, complexation with proteo-
glycans, self-aggregation, and enzymatic modification.

Statins may indeed have direct effects on foam cell forma-
tion by down-regulating macrophage scavenger receptors. For
instance, lovastatin reduces the expression of the scavenger
receptor CD36 on human monocytic U937 [136], inhibits type
I scavenger receptor A in human monocyte-like THP-1 cells
[137], and decreases the abundance of mRNA for the lectin-
like oxidized LDL receptor 1 (LOX-1) in human monocyte-
derived macrophages [138]. Further, simvastatin reduces
cholesteryl ester uptake triggered by aggregated LDL [139] in
both platelet-derived growth factor-stimulated and unstimu-
lated vascular smooth muscle cells.

The more lipophilic statins like simvastatin, lovastatin or
atorvastatin, but not pravastatin, decrease the proliferation
[140, 141] and elicit apoptosis of smooth muscle cells [142,
143]. It is still a matter of debate, whether inhibition of
smooth muscle cell proliferation would yield clinical benefit.

Smooth muscle cells may be considered important for plaque
stability, as they strengthen the fibrous cap and regulate the
synthesis of interstitial collagen. It is also not clear whether
the differences between statins regarding their effects on
smooth muscle cell viability will ultimately be of clinical im-
portance.

Abundant production of matrix metalloproteinases (MMP) by
macrophages has been implicated in the weakening of the fi-
brous cap in unstable plaques. Exposure to oxidized LDL in-
creases matrix metalloproteinase-9 and decreases tissue in-
hibitor of metalloproteinase-1 (TIMP-1) in human monocyte-
derived macrophages [144]. Statins may contribute to plaque
stabilization by modulating metalloproteinase expression.
Bellosta et al. [145] found that fluvastatin decreased constitu-
tive and phorbol ester stimulated gelatinase B (MMP-9) activ-
ity. In Watanabe heritable hyperlipidaemic (WHHL) rabbits,
cerivastatin diminished accumulation of macrophages in aor-
tic atheroma and macrophage expression of MMP-1, MMP-3,
MMP-9 decreased with cerivastatin treatment [122].

In rabbits, macrophage accumulation and interstitial colla-
genase (matrix metalloproteinase-1, MMP-1) expression in
atheroma were also reduced by lowering the lipid content of
the diet. At the same time, the aortic content of interstitial col-
lagen increased in the lipid-lowering group compared with
hyperlipaemic groups. These results obviously raise the possi-
bility that plaque stabilization is a result of lipid modification
rather than an effect specific to statins [146].

In an elegant prospective study, the effect of oral prava-
statin (40 mg daily for 3 months prior to carotid endarterec-
tomy) on plaque composition was investigated in 11 patients
with symptomatic carotid artery stenosis of > 70 % in diam-
eter [147]. The control group consisted of 13 patients with the
same degree of stenosis who underwent routine carotid endar-
terectomy but without statin therapy. Analysis of the carotid
plaques obtained during operation (Figure 3) showed that
pravastatin reduces the lipid content of human plaques, re-
duces oxidized LDL, decreases the number of inflammatory
cells (i.e. macrophages and T cells), matrix metalloproteinase
2 (MMP-2) expression, and also decreases cell death. In con-
trast, TIMP-1 immunoreactivity and collagen content were
found to be increased [147].

Figure 3: Effect of statin treatment
on the composition of atheroscle-
rotic plaques. Consecutive patients
with symptomatic carotid artery
stenoses received 40 mg daily pra-
vastatin (n = 11) or no lipid-lower-
ing therapy (n = 13) for 3 months
before elective carotid endarterec-
tomy. Carotid plaque composition
was assessed with special stains
and immunocytochemistry with
quantitative image analysis. Com-
pared to controls, pravastatin de-
cresed the contents of lipids, oxi-
dized LDL, macrophages, T cells,
matrix metalloproteinase 2 (MMP-
2) and apoptotic cells, but increas-
ed the tissue inhibitor of metallo-
proteinase 1 (TIMP-1) and collagen.
A slight increase in smooth muscle
cells was also observed. Modified
according to [147].
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����� Statin Treatment Affects Blood

Coagulation

It has been known for long that hypercholesterolaemia en-
hances platelet reactivity [148, 149]. It would therefore not be
surprising if statin treatment demonstrated effects on platelet
activity. At a dose of 40 mg daily, fluvastatin reduced platelet
aggregation within four weeks of treatment [150]. Interest-
ingly, in this study incubation in vitro of platelets with increas-
ing concentrations of fluvastatin resulted in a dose-dependent
reduction in platelet aggregation, suggesting a direct effect of
fluvastatin on platelets. Aviram et al. [151] demonstrated that
lovastatin therapy was associated with a similar mechanism of
action. In cholesterol-fed pigs, in which atherosclerotic le-
sions were induced by mechanical injury, Alfon et al. [152]
found a reduction in platelet deposition on a mildly damaged
vessel wall by both fluvastatin and lovastatin. In hyperlipid-
aemic rabbits the same group found an effect of atorvastatin, but
not simvastatin on platelet thrombus formation [153] ex vivo.

Further, in an ex vivo model, the effect of pravastatin on
thrombus formation was evaluated in patients with stable
coronary disease. Platelet thrombus formation was measured
in 16 hypercholesterolaemic patients before and after a mean
of 2.5 months of therapy and in 16 normocholesterolaemic
controls. At baseline, platelet thrombus formation was higher
in the hypercholesterolaemic patients compared with the
normocholesterolaemic patients. After pravastatin therapy,
however, platelet thrombus formation in hypercholesterolae-
mic patients was similar to normocholesterolemic patients
[154]. A similar comparative study of pravastatin and simva-
statin evaluated platelet thrombus formation in patients with
stable coronary disease taking 325 mg of aspirin per day.
Thrombus formation was assessed before and after 2 to 3
months of statin therapy. On the background of similar reduc-
tions of LDL cholesterol in both groups, platelet thrombus
formation was significantly reduced by pravastatin but not
simvastatin [155]. It is currently not clear whether this find-
ing of a differential effect of statins on thrombus formation
bears any clinical significance.

Tissue factor plays a pivotal role in the initiation of
thrombus formation in acute coronary syndromes [156]. In
monocyte-derived macrophages the lipophilic compounds
fluvastatin and simvastatin, but not pravastatin reduced tissue
factor activity in vitro [157] and ex vivo [158]. This effect ap-
peared dependent on an inhibition of the mevalonate pathway,
as it was completey reversed by providing mevalonate [157,
158]. Interestingly, fluvastatin has been shown to lower tissue
factor pathway inhibitor (TFPI), a lipoprotein-bound negative
regulator of tissue factor activity [159].

Studies of fibrinogen are highly inconsistent. Basically, there
are studies in which fibrinogen remained unchanged [160–170],
increased [171–175] and decreased [166, 171, 176] with no con-
sistent differences between individual statins. Similarly, reports
on the effects of statins on plasminogen activator inhibitor-1
(PAI-1), a modulator of plasminogen activation, which is in-
creased in diabetes mellitus and hypertriglyceridemia, are
equivocal. Studies with pravastatin demonstrated reductions in
PAI-1 [177, 178], whereas others suggest minimal changes with
fluvastatin [179] or increases with simvastatin [170]. In cultured
endothelial cells and in smooth muscle cells, all currently avail-
able statins reduced the expression of PAI-1, and in smooth

muscle cells these statins enhanced t-PA production, suggest-
ing an overall anti-coagulant effect of the compounds (180).

����� Clinical Implications

As atherosclerosis progresses slowly it has been argued that
long-term administration of lipid-lowering drugs was required
to substantially lower the risk of major cardiovascular events. In
the major trials of statins, improvement of clinical outcome
emerged after one to two years of treatment. The angiogra-
phically controlled trials of statins indicated risk reduction
without evidence of substantial plaque reduction [181].

However, improvement of endothelial function and myocar-
dial perfusion occurs even within several weeks [30, 31, 38], even
in patients with acute coronary syndromes [28]. Regardless of
whether the immediate effects of statin therapy result from LDL
cholesterol reduction or from pleiotropic effects, they might ad-
vocate the early use of statins in acute coronary syndromes. The
major secondary prevention trials of statins only included pa-
tients who had suffered coronary syndromes three to six months
prior to recruitment and once they were again in a clinically stable
condition. Prospective data are now emerging which support a
role of statins in the management of acute coronary syndromes.

A retrospective analysis of the GUSTO IIb and PURSUIT
trials by Aronow and colleagues compared mortality in patients
with acute coronary syndromes who were discharged on lipid-
lowering agents (n = 3653) following the initial hospitalisation
with those who did not receive these agents (n = 17,156). Lipid-
lowering therapy was associated with a smaller proportion of
deaths at 30 days (0.5 % versus 1.0 %, p = 0.001) and at 6
months (1.7 % versus 3.5 %, p < 0.0001) [182]. Among 19,599
patients of the prospective Swedish Register of Cardiac Inten-
sive Care, who were discharged alive from the hospital, were
5528 who received statins at or before discharge and 14,071
who did not [183]. At 1 year, unadjusted mortality was 9.3 % in
the no-statin group and 4.0 % in the statin treatment group. In
addition, several small-scale studies demonstrated that the early
initiation of statin treatment might be beneficial [184].

MIRACL, the Myocardial Ischaemia Reduction with Aggres-
sive Cholesterol Lowering study, is the first large-scale prospec-
tive study designed to provide evidence that initiation of statin
therapy in the early post-acute coronary syndrome period is ben-
eficial in reducing the risk of early recurrent ischaemic events
[185]. The primary end-point was a composite including death,
nonfatal acute myocardial infarction, cardiac arrest with resusci-
tation, or recurrent symptomatic myocardial ischaemia with ob-
jective evidence and requiring emergency rehospitalization.
Within four months, atorvastatin at 80 mg daily resulted in a 16
percent (p = 0.048) improvement in the incidence of the primary
endpoint.

����� Conclusions

Treatment with statins clearly is one of the most exciting ad-
vances in the prevention and treatment of atherosclerosis. Clini-
cal observations raise the possibility that the benefit of statin
therapy cannot solely be explained by LDL cholesterol reduction.
In vitro, statins enhance the production of NO, exert anti-oxida-
tive, anti-inflammatory, immuno-modulatory and anti-throm-
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botic effects. How these findings apply to the in vivo situation in
humans is, at the time being, still an open question. Because re-
duction of LDL cholesterol on its own might elicit many of the
functional changes seen, plenty of work will be required to pre-
cisely distinguish the direct effects of statins on plaque structure
and composition from those merely attributable to a negative cho-
lesterol balance in the vessel wall. It is further an open question
whether or not those effects related to the depletion of cellular
mevalonate (and consequently ubiquinone, dolichol, geranyl-
geraniol and farnesol) should be coined “pleiotropic” as they re-
flect the primary mode of action of statins. With the number of
statins in the marketplace increasing, differences between these
compounds regarding their actions beyond cholesterol lowering
may well emerge in the future.
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