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Glycosaminoglycans and Glioma Invasion
Soumi Kundu, Karin Forsberg-Nilsson

  Glioblastoma

Gliomas are classifi ed according to WHO criteria in grades 
I–IV where glioblastoma is the most aggressive and also the 
most common malignant primary brain tumour among adults. 
Every year, approximately 3 per 100,000 individuals are di-
agnosed with glioblastoma [1] for which the standard treat-
ment is surgery followed by radiation and chemotherapy. Even 
though the introduction of temozolomide has somewhat pro-
longed life expectancy, the outcome is still poor with a median 
survival of only ~15 months [2].

In addition to the classical WHO classifi cation, glioblastoma 
can be further divided into subtypes, using a molecular-based 
taxonomy. This aims at better describing the heterogeneous 
nature of these tumours. The term glioblastoma multiforme 
(GBM) is used synonymously with glioblastoma to emphasize 
the intra-tumour and inter-tumour diversities. By means of a 
combination of mutational and expression profi ling data sev-
eral molecular subgroups have been described [3–5]. From the 
Cancer Genome Atlas (TCGA) data collection [5], GBM was 
divided into the following subtypes: (1) proneural, (2) neural, 
(3) classical, and (4) mesenchymal. An even more recent clas-
sifi cation by Sturm et al [6] added the methylation patterns in 
the subtype analysis, and also included paediatric GBM. In 
addition, a description of the landscape of somatic mutations 
in GBM [7] provides further information on subtypes, surviv-
al, and increased understanding of the disease at the molecu-
lar level. Taken together, a solid base for patient stratifi cation 
is becoming possible due to the increased availability of muta-
tional analysis and expression data for GBM.

  Glioblastoma Invasion Is a Major Clinical 

Problem

A typical feature of GBM is the extensive infi ltration of tu-
mour cells into the healthy parenchyma that makes complete 
resection impossible. This feature is common for all diffuse 
astrocytic tumours, but it is a particular problem in GBM [8]. 
After surgical removal, tumour recurrence within a distance 
of several centimetres from the original tumour site often oc-
curs [9]. The high motility of glioma cells is underscored by 
their ability to spread even to the contralateral hemisphere via 
the corpus callosum. However, in contrast to its effi cient inva-
sion within the brain, GBM rarely metastasizes via the cere-
brospinal fl uid [10].

Therapies to target GBM invasion are highly warranted be-
cause of its effi cient migration, eg, along white-matter tracts 
[11]. For a tumour to spread away from the original neoplasm, 
cancer cells have to detach and migrate through the parenchy-
ma, which includes breakdown of several extracellular matrix 
molecules. It is well-known that glioma cells express cell ad-
hesion molecules that facilitate the invasion process [12]. Tu-
mour cell migration needs to be accompanied by matrix degra-
dation, which is carried out by a variety of enzymatic process-
es [13]. This leads to ECM remodelling since the migrating 
tumour cells lay down de novo ECM of their own, composed 
primarily of ECM molecules supporting migration [14].

As of today, novel therapeutic approaches mainly target the 
cancer cells per se and focus less on the surrounding, non-tu-
mour environment. In fact, most clinical trials have been di-
rected against the bulk of cancer cells and few drugs have been 
tested that target the invasive mechanisms. Attempts at reduc-
ing matrix metalloproteinase (MMP) levels in glioma with 
marimastat were not successful since the combination of mari-
mastat and temozolomide was approximately equivalent to te-
mozolomide alone and also caused toxic effects [15, 16]. An-
other example are clinical trials with cilengitide, an  inhibitor 
of integrin v3 and integrin v5 [17] that may affect both 
growth and spread of tumour cells as well as angiogenesis. 
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Abstract: There is a great need for novel thera-
pies to target malignant glioma, a disease with 
an often dismal prognosis. One of the hallmarks 
of malignant glioma is its effi cient invasion of the 
healthy brain parenchyma, which leads to rapid-
ly recurrent disease upon surgical removal of the 
original tumour. To be able to establish new tu-
mours at a distance from the original neoplasm, 
glioma cells must detach, migrate through the 
microenvironment, settle, and proliferate in their 
new location. This includes changing adhesive 
characteristics, breaking down extracellular ma-
trix molecules (ECM), and perturbed growth fac-
tor signalling. Investigations of the glioma-specif-
ic ECM composition may therefore provide new 

insights into glioma infi ltration. In this review, we 
focus on glycosaminoglycans, important compo-
nents of the ECM that are long unbranched poly-
saccharides composed of repeating disaccharide 
units. We discuss the roles for hyaluronan, one of 
the major brain ECM molecules, and that of the 
proteoglycans, heparan sulphate proteoglycans 
(HSPG) and chondroitin sulphate proteoglycans 
(CSPG), in glioma biology. Heparan sulphate (HS) 
and chondroitin sulphate (CS) chains act together 
with a wide variety of bioactive molecules, and 
these interactions depend on the HS and CS sul-
phation patterns. HS and CS chain modifi cations 
are implicated not only in normal development 
and homoeostasis but they also play important 

roles in pathological conditions including cancer. 
Dysregulated glycosaminoglycans, their biosyn-
thetic and degradation enzymes as well as the 
proteoglycan core proteins are known to affect 
several stages of tumour progression, angiogen-
esis, and metastasis. Finding the specifi c charac-
teristics of tumour cells that confer this infi ltra-
tive capacity of glioma may offer new avenues 
for drug development. Eur Assoc NeuroOncol 
Mag 2014; 4 (2): 75–80.

Key words: heparan sulphate, chondroitin sul-
phate, extracellular matrix, tumour invasion
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However, in February 2013, it was announced that the phase-
III clinical trial of cilengitide did not increase overall surviv-
al over standard treatment comprising radiation and temozo-
lomide. In light of these failures, more targets specifi c for tu-
mour cell invasion are needed, based on mechanisms respon-
sible for tumour cell infi ltration. In this review, we focus on 
the role of glycosaminoglycans because they are major com-
ponents of the extracellular matrix and important players in 
the invasive processes.

  The Extracellular Matrix of the Healthy 

and Malignant Brain

Several aspects of ECM biology are different between the 
brain and non-CNS tissues. Collagen-containing basement 
membranes that are typical for the extra-CNS tissue are only 
present in the meninges and around blood vessels in the nor-
mal brain. Basal lamina extensions from the vessels in the 
subventricular zone form structures called fractones [18] 
that have been suggested to enrich growth factors and other 
HS-binding signalling molecules in the neurovascular niche, 
where adult neural stem cells reside. Cancer stem cells (CSC) 
in glioblastoma share many properties with normal neural 
stem cells, such as their ability for self-renewal, and they are 
highly motile [19]. The perivascular niche in glioma is be-
lieved to harbour CSCs that are supported by trophic factors 
from the vasculature [20]. Sequestration of growth factors by 
HSPG in the tumourigenic niche could thus maintain cancer 
stem cells in a tumourigenic niche with similarities to the nor-
mal neurogenic niche (reviewed in [21]). In contrast to the 
normal brain glioblastoma has greatly increased levels of col-
lagen [22] and the importance of the collagen structure for 
glioblastoma neovascularization and tumour growth has re-
cently been reported [23].

In the adult brain, the extracellular matrix regulates structur-
al and functional plasticity, partly through the brain-specifi c 
dense ECM structures called perineuronal nets. These were 
fi rst described by Golgi (reviewed in [24]) and are composed 
mainly of chondroitin sulphate proteoglycans, hyaluronan, 
Tenascin-R, and Sema3A [26]. The perineuronal nets restrict 
reorganization of process formation mainly through inhibitory 
CSPG and Sema3A. CSPGs are highly up-regulated in glioma 
[27] but their role in glioma invasiveness is not fully elucidat-
ed [28, 29], as will be discussed below.

  Glycosaminoglycans Are Major Compo-

nents of the Brain ECM

Glycosaminoglycan (GAG) is the common term for  linear 
poly saccharides that are composed of repetitively appear-
ing disaccharides consisting of an N-acetylated or N-sulphat-
ed hexosamine together with either uronic acid (glucuronic 
acid or iduronic acid) or galactose. These molecules are highly 
conserved during evolution, which points at their ubiquitous 
functions in many biological processes [30]. Hyaluronan, a 
major constituent of the extracellular matrix (ECM), is a large, 
unbranched glycosaminoglycan that lacks sulphate groups. 
The glycosaminoglycans heparan sulphate (HS), chondroitin 

sulphate (CS), dermatan sulphate (DS), and keratan sulphate 
(KS) make up the proteoglycans, consisting of core proteins 
covalently linked to one or more glycosaminoglycan chains. 
The glucosaminoglycan components of proteoglycans are sul-
phated in various positions, with a differing disaccharide com-
position. Dermatan sulphates (DS) have iduronic acid, while 
chondroitin sulphates (CS) lack these residues. Keratan sul-
phates (KS) have no uronic acid and are instead made up by 
N-acetylglucosamine and galactose units. Proteoglycans are 
either attached to the plasma membrane, found in vesicles in-
side cells, or exported to the extracellular space [31]. Because 
of the high abundance of hyaluronan, heparan sulphate, and 
chondroitin sulphate in the brain, relative to dermatan sul-
phate and keratan sulphates, this review will focus on the fi rst 
3 types of molecules.

Hyaluronan
Hyaluronan (HA) is the principal component of the brain 
ECM with a unique composition, and it does not undergo sul-
phation and epimerization [32, 33]. HA content is elevated in 
primary brain tumours [34]. In contrast to other GAGs, HA is 
not synthesized in the Golgi apparatus. Hyaluronan synthase 
is the primary biosynthetic enzyme in mammals, which occurs 
in 3 isoforms synthesizing HA polymers of different lengths. 
The enzyme is located in the plasma membrane and catalyzes 
polymerization as well as translocation of HA out of the cell 
[35, 36]. In most tissues, HA is rapidly degraded by hyalu-
ronidase (Hyal). Mammalian Hyal has overlapping substrate 
speci fi city and is known to degrade HA and CS and, to some 
extent, DS. Hyaluronidase acts in concert with 2 other exogly-
cosidases (removing sugars from the non-reducing end [37]). 
Human glioblastoma expressed levels of hyaluronan synthas-
es above that of normal cells [38, 39] and over-expression of 
hyaluronan synthase-2 reduced growth of murine glioma, but 
only if hyaluronidase was concomitantly present [38]. Fur-
thermore, hyaluronan synthase has been associated with in-
creased receptor tyrosine kinase activity [40] and hyaluronan 
synthase-2 mRNA levels were higher in GBM than in normal 
brain [41]. This implies an important balance between synthe-
sis and breakdown of HA in brain tumour biology.

HA can reach high molecular mass, consisting of 25,000–
30,000 disaccharide repeats under normal conditions, and 
it attains complex secondary and tertiary structures regulat-
ing physiological processes. As a major element of the brain 
ECM, HA is abundant in white-matter tracts [42]. These are 
the preferred migration routes for neural stem cells, eg, after 
transplantation into the injured rodent brain [43–45], and sim-
ilarly these tracts constitute dissemination paths for tumour 
cells in glioma [11, 14, 46]. HA is also present in the neuro-
genic niche and important for stem cell maintenance [47]. Un-
der pathological conditions, such as injury, infl ammation, and 
repair, it undergoes regulations. The HA polymer becomes de-
graded by a series of enzyme reactions, thus generating HA 
with a range of molecular weights that are involved in vari-
ous biological functions [37]. Low and intermediate molecu-
lar-weight HA has distinct biological functions as compared 
to native high molecular-weight HA, for example stimulating 
gene expression in macrophages, endothelial cells, and cer-
tain epithelial cells as well as scar formation [48]. In glioma, 
low molecular-weight HS oligomers have been shown to act 
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as an inhibitor of hyaluronan-dependent 
release of putative effector molecules 
from tumour cells [49].

HA interacts with several receptors [50] 
out of which CD44 and RAHM (recep-
tor for hyaluronic acid-mediated mo-
tility) affect cell growth and motility, 
and thereby has the ability to mediate 
primary tumour cell invasion and mi-
gration [51, 52]. CD44 is the princi-
pal cell surface receptor for HA, and 
HA-CD44 interactions play a crucial 
role in eg development and infl amma-
tion, tumour growth, and metastasis 
[53, 54]. Signalling through the intra-
cellular part of CD44 was shown to af-
fect cell adhesion and motility through 
interactions with cytoskeletal proteins 
[55, 56]. In addition, CD44 interacts 
with a large number of signalling mol-
ecules that promotes matrix degrada-
tion and the spread of tumour cells (re-
viewed in [57]). HA-independent roles for CD44 have also 
been proposed in cell adhesion/migration because CD44 can 
act as a cell-surface anchor for the ECM-degrading enzyme 
MMP-9 [58].

Heparan Sulphate
Heparan sulphate proteoglycans (HSPG) are found either at 
the cell surface (syndecans and glypicans) or secreted (eg, 
perlecan and agrin) [59]. HSPGs are main components of the 
ECM where they interact with a large number of physiologi-
cally important macromolecules, thereby infl uencing biologi-
cal processes [60]. HSPGs modulate growth factor activities, 
regulating interactions between ligand and receptor [61], and 
during CNS development, morphogen gradients can be main-
tained by HSPGs [62] (Figure 1). Its unique molecular de-
sign is composed of clusters of N- and O-sulphated sugar res-
idues, separated by regions of low sulphation, which deter-
mines specifi c protein-binding properties [59]. In the adult 
brain, HS is associated with neural stem cell niches [63], 
where it may be involved in regulating neural stem cell main-
tenance. Recently, levels of 6O-sulphation of HS have also 
been linked to injury response as increased sulphation pro-
moted glial scarring [64].

Mouse gene knockout experiments have shown the vital role 
of HSPGs in development and homeostasis [65]. Studies on 
neural differentiation have, to a large extent, been performed 
on in vitro differentiated ES cells to neural progenitors due to 
early embryonic lethal phenotypes of mice with deletions in 
crucial HS chain modifi cation enzymes [66]. Our recent pub-
lication showed that N-sulphation enzymes in HS biosynthe-
sis are indispensible for neural differentiation and that the ra-
tio between HS and FGF was the crucial factor determining 
neural differentiation [67].

It has long been known that HSPGs are involved in the pro-
gression of various cancers [68] including glioma, where the 
levels of HSPGs are higher than in the normal brain [69]. Syn-

decan-1 [70] and glypican-1 [71] are examples of HSPG core 
proteins with increased expression in glioma cells compared 
to non-neoplastic cells. Su et al [71] found that glioma cell-
associated HSPG was more capable of stimulating FGF-2 
signalling than HSPG from normal cells, further supporting 
the role for HS-mediated growth factor signalling in glioma. 
There are several receptor tyrosine kinase pathways that can 
be modulated by altered HS amounts and composition. The 
extracellular sulphatase Sulf-2, which controls 6O-sulphation, 
thereby regulating HSPG interactions with eg PDGF recep-
tors, has recently been shown to be highly expressed in glio-
blastoma and demonstrated to increase tumour size [72]. In-
creased Sulf-2 expression was most prominent in the proneu-
ral subclass that is associated with increased PDGF receptor 
activity, and the PDGF alpha receptor pathway was particular-
ly infl uenced by altered Sulf-2 levels although IGF1 receptor 
and EPHA2 stimulation were affected as well.

A systematic analysis of proteoglycan expression of glioblas-
tomas included in The Cancer Genome Atlas [73] showed that 
several of the proteoglycans as well as their biosynthetic and 
degradation enzymes were differently regulated in GBM com-
pared with the normal brain [41]. The authors found by means 
of database mining that biosynthetic enzymes were mostly 
down-regulated, except for HS3ST3a1, as previously report-
ed [71]. Sulphation of HS is critical for its function as a co-
receptor for various growth factor receptors, and therefore the 
increase in 3O-sulphation (by HS3ST3a1) and decreased 6O-
sulphation (by increased Sulf2 [72] may be specifi c for GBM 
[41].

Heparanase, the major HS-degrading enzyme, was found to 
be up-regulated in TCGA GBM patients [41]. There are some 
reports implicating heparanase in glioma. In a study us ing hu-
man glioma cell line U87, heparanase over-expression led to 
increased motility and invasion. Larger tumours were found 
after xenografting of glioma cells with elevated hepa ranase, 
whereas at further increased levels, tumour growth was inhib-
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Figure 1. (A) Schematic representation of heparan sulphate (HS) proteoglycan and chondroitin sulphate (CS) pro-
teoglycan biosynthesis and chain modifi cations. (B) Heparan sulphate proteoglycans (HSPG) act as co-receptors for 
growth factor (GF) signalling via growth factor receptors (GFR), thereby promoting cell proliferation, angiogenesis, 
and migration. (C) Degradation of HSPG by heparanase (Hpse) contributes to ECM degradation and release of HS-
bound growth factors.
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ited [74]. Another study reports that heparanase was not ex-
pressed in human GBM and that U87 glioma cells lost their 
heparanase expression upon intracranial grafting to form tu-
mours [75]. In contrast, Hong et al [76] found that mRNA 
levels of heparanase were elevated in glioma of various WHO 
grades relative to normal human brain, and that heparanase-
expressing tumour cells in vivo had elevated proliferation. 
Similarly, U251 glioma cells over-expressing he paranase 
have increased proliferation, migration, and colony forma-
tion, accompanied by increased AKT phosphorylation [77]. 
Recently, heparanase has been shown to be a target gene for 
TGL1 [78], an alternatively spliced form of the GLI1 tran-
scription factor, which causes migration and invasion of glio-
blastoma [79].

Chondroitin Sulphate
Chondroitin sulphate occurs as sulphated GAGs covalently at-
tached to a core protein on cell surfaces and within extra-/peri-
cellular matrices [80]. The synthesis of CSPG starts in a sim-
ilar way as the HSPGs, in the endoplasmic reticulum/Golgi 
compartment with the synthesis of the GAG-protein linkage 
region. Like the HS, CS moieties vary considerably in their 
size and number of chains per protein core and in the position 
and degree of sulphation. A wide variety of biological func-
tions have been attributed to CSPGs including cytokinesis, 
morphogenesis, and neuronal plasticity. It is also described to 
play an important role in pathological processes like brain in-
jury, infections, and cancer metastasis [27].

As is the case with HSPGs, CSPGs show high expression in 
neurogenic niches of the brain, where they play important 
roles in regulating growth factor signalling [81]. Furthermore, 
the presence of CSPGs on neural progenitors is correlated to 
their ability to respond to FGF-supported proliferation and 
EGF-induced migration [82]. Neuronal migration and forma-
tion of neurites are believed to depend on over-sulphated CS 
[83]. Studies of knockout mice defi cient in CS sulphotrans-
ferases confi rmed that these enzymes are needed for radial mi-
gration of cortical neurons [84].

It has long been known that CSPG4, also referred to as NG2, is 
a marker of oligodendrocyte progenitor cells (OPC) [85], and 
that it promotes proliferation and migration by function ing as 
a co-receptor for growth factor signalling. Both  PDGF-AA 
and FGF2 bind NG2 core protein [86], and a large number of 
studies have delineated the role for these interactions in oli-
godendrocyte biology [87]. Moreover, NG2 was also found 
to regulate EGFR signalling in OPCs and to contribute to 
their polarity [88]. Apart from OPCs, NG2 is also expressed 
on peri cytes in the brain, and thereby involved in maintain-
ing the integrity of the blood-brain barrier [89]. After injury 
of the CNS, CSPGs are the main inhibitory molecules of the 
glial scar [90], thereby creating barriers to prevent injury/in-
fl ammation to spread. In doing so, CSPGs also block axonal 
re-growth into the injured area, thereby counteracting regen-
erative processes. CSPGs thus make up important molecular 
boundaries in the brain, preventing cell movement.

A role for CSPGs in malignant progression of glioma was 
suggested several years ago [91] and followed by many oth-
er studies [92]. In many cancers, the expression of versican is 

increased [93]. Furthermore, NG2 knockout mice exhibit re-
duced tumour angiogenesis [94] and CSPG levels also regu-
late immune cell infi ltration in tumours [95]. In an experimen-
tal model of glioblastoma, GBM over-expressing NG2 gave 
rise to larger, more vascularised tumours as compared to tu-
mours from NG2-negative cells [96]. Patients with high NG2 
levels had a shorter survival time, suggesting NG2 as a prog-
nostic predictor. These authors showed that elevated NG2 ex-
pression was correlated to increased resistance to radiation, 
and an induction of scavenging enzymes was proposed as 
one of the mechanisms behind this observation [97]. Further-
more, human GBM-derived NG2-positive tumour cells gener-
ated more aggressive tumours than the NG2-negative popula-
tion [98]. An oncolytic virus was reported to be more effi cient 
when CS was enzymatically removed and the tumours became 
smaller, without signs of increased tumour spread [99]. In ad-
dition, expression of the core proteins and the biosynthetic en-
zymes for CSPGs were found to be predominantly over-ex-
pressed in human glioblastoma based on the analysis of the 
TCGA database [41]. Taken together, these studies suggest 
CSPGs as targets in glioblastoma therapy.

The notion that CSPGs promote invasiveness of brain tumours 
despite their function to form barriers in the normal and in-
jured brain may seem somewhat contradictory. For example, 
the lectican family of CSPGs is the most abundant CSPG in 
the adult brain where it provides a structural and functional 
link from the cell into the matrix, which is mainly composed 
of HA [100]. Lectican deposition has thus been shown to be 
the major inhibitory molecules for axonal outgrowth both in 
vitro and in vivo [27]. Nonetheless, the lectican family core 
proteins are highly up-regulated in GBM with the exception of 
neurocan [41]. This potential inconsistency was recently dis-
cussed by Silver et al [29]. In their study, the authors showed 
that CSPG borders were associated with contained, non-inva-
sive tumours, and that glycosylated CSPGs were absent from 
diffusely infi ltrating GBM. They propose that the degree of 
glycosylation of CSPGs is inversely correlated to the invasive-
ness of glioblastoma. This notion is supported by a previous 
study in which a less glycosylated form of the CSPG brevican 
was associated with human glioma [101]. Thus, the side chain 
modifi cations of CS would be of importance, not only the ex-
pression levels of the CSPG core protein.

  Concluding Remarks

In conclusion, we have discussed the effector roles for gly-
cosaminoglycans, including hyaluronan and the proteogly-
cans HSPG and CSPG in glioblastoma growth and invasion. 
These molecules and the enzymes regulating their synthesis 
and degradation are abundant and differently regulated in glio-
blastoma compared to the normal brain. They may therefore 
constitute new therapeutic opportunities for targeting malig-
nant glioma, a disease characterised by diffuse infi ltration and 
local invasion.
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