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I t is rather over a decade since vascular ATP-sensitive
potassium (KATP) channels were first identified. Since

then these channels have been the subject of extensive re-
search, and much of this work has been reviewed quite re-
cently [1–3]. KATP channels link membrane K+ permeability
to cellular metabolism. They are inhibited by intracellular
ATP, and activated by ADP and other nucleoside diphosphates.
They also form targets for therapeutic drugs that act either as
channel openers or blockers. In vascular smooth muscle,
opening KATP channels causes membrane hyperpolarization,
decreased intracellular calcium concentration, and vaso-
relaxation. In addition to metabolic sensitivity, the channels
are opened by vasodilators, while many vasoconstrictors close
them, and such modulation represents a major component of
their physiological regulation. Functional work has shown
that KATP channels in arterial smooth muscle cells provide a
background potassium conductance important in the regula-
tion of membrane potential and so arterial tone and blood
flow in a number of vascular beds. KATP activation can con-
tribute both to basal blood flow, and to changes in flow in
response to metabolic changes, as in exercise. Under patho-
logical conditions, excessive KATP channel activation may
play a role in the catastrophic vasodilation and vascular hypo-
reactivity associated with shock. This review concentrates on
some recent developments in understanding the molecular
structure, regulation, and some of the functional significance
of vascular KATP channels.

Molecular Structure
KATP channels are heteromultimers of potassium channel
subunits of the Kir6 family and sulphonylurea receptors
(SUR). The pore of the channel is formed by a tetramer of
Kir6 subunits, which appear to associate with SURs with 1:1
stoichiometry so that the complete channel forms as an
octamer [4]. The Kir6 subunit confers sensitivity to inhibi-
tion by ATP, conductance and rectification properties. SUR

modulates the sensitivity to ATP inhibition, and is also re-
sponsible for the activating effects of nucleoside diphosphates
(NDPs). As their name suggests, sulphonylurea drugs inhibit
KATP channels by interacting with SUR, and drugs that open
KATP channels also act through this subunit [5]. Two Kir6
genes have been found: Kir6.1 and Kir6.2, while two SUR
genes are also known, SUR1 and SUR2. SUR2 has two main
splice variants, encoding the receptors SUR2A and SUR2B,
and certain other minor variants have been identified at the
RNA level [4]. Interaction of the two types of subunit is re-
quired for trafficking of correctly assembled channels to the
cell membrane [6]. Consistent with this, a C-terminal trun-
cated version of Kir6.2 that lacks the endoplasmic reticulum
retention sequence can form functional channels in the ab-
sence of SUR [7]. KATP channels of different molecular com-
position are expressed in different tissues, and their varied
properties are significant both for their physiological func-
tions and for selective pharmacology. Correlation of the
properties, regulation and pharmacology of KATP channels
with their molecular structure is currently the subject of in-
tensive research.

There is good evidence that the KATP channel of the pan-
creatic β-cell comprises Kir6.2/SUR1, while that of the sar-
colemma of cardiac muscle is Kir6.2/SUR2A [4, 5]. Thus co-
expression of the cloned subunits in Xenopus oocytes or
mammalian cell lines reproduces the major properties of the
channel in native tissue, while knockout studies have also
shown the predicted abolition of channel activity [8, 9].
However, the molecular nature of the KATP channel, or chan-
nels, of vascular smooth muscle has not yet been definitively
determined, and is complicated by diversity in vascular KATP
channels [1, 2].

KATP channels of vascular smooth muscle show a different
pharmacology with respect to KATP opening drugs from that
of pancreatic or cardiac channels, being activated by pinacidil,
levcromakalim, and diazoxide [3]. This pattern of sensitivity
to KCOs is conferred on recombinant channels by the
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SUR2B subunit, suggesting that this subunit might form a
common component of KATP channels in VSM. In non-vas-
cular smooth muscle cells of colon, bladder, and urethra it has
been suggested on the basis of reverse transcription polymer-
ase chain reaction (RTPCR) and mRNA measurements that
KATP channels comprise Kir6.2/SUR2B [10–12]. Currently,
the best evidence for the molecular composition of a particu-
lar vascular smooth muscle KATP channel is that for the nu-
cleoside diphosphate (NDP)-activated channel, sometimes
called KNDP [13, 14]. KNDP is activated by ATP at low con-
centrations, but inhibited above about 1 mmol/l, is sensitive
to activation by NDPs in the presence of the KATP channel
opener pinacidil, and has a relatively small unitary conduct-
ance of 30–35 pS in symmetrical high [K+] [13–15]. Both
Kir6.1 and SUR2B show widespread expression [16, 17].
When co-expressed in heterologous systems they form a
channel with ATP and NDP sensitivity and single channel
conductance comparable to that of native KNDP. Thus it
seems likely that KNDP is formed by the combination of
Kir6.1 and SUR2B [18]. Recent evidence suggests that this
subunit combination may also underlie KATP channels of pul-
monary arterial smooth muscle. Cultured human pulmonary
arterial smooth muscle cells expressed a channel with a con-
ductance in the appropriate range (28–29 pS), and RTPCR
revealed transcripts for Kir6.1 and SUR2B, but not Kir6.2,
SUR2A or SUR1 [19].

There is considerable evidence that KATP channels of vas-
cular smooth muscle can differ in terms of their single chan-
nel conductance and sensitivity to regulation by ATP and
other nucleotides (reviewed in [1, 2]). Recent work on
cloned KATP channels has raised the possibility that some of
this diversity might arise from the co-assembly of the pore-
forming subunits Kir6.1 and Kir6.2 to form heterotetramers
[20, 21]. Channels formed by cloned Kir6.1 or Kir6.2 alone
show conductances of 30–35 pS and 70–80 pS respectively,
while Kir6.1–Kir6.2 dimers form channels with an interme-
diate conductance [16, 22, 23]. Co-expression of Kir6.1 and
Kir6.2 together with SUR2B in HEK293 cells leads to chan-
nels with a range of conductances consistent with the forma-
tion of tetramers with 1, 2, 3, or 4 of either channel subunit
[20]. Further evidence for Kir6.1–Kir6.2 co-assembly in het-
erologous expression systems has been provided by the use of
dominant negative subunits in which the conserved GFG se-
quence is mutated so that the subunit cannot form a func-
tional pore; such subunits can prevent pore formation by
wild-type subunits in a tetramer. In HEK293 cells, dominant
negative Kir6.1 subunits can suppress currents through chan-
nels formed by wild-type Kir6.2 (or Kir6.1) subunits ex-
pressed with either SUR2B or SUR2A, and dominant nega-
tive Kir6.2 has similar effects [20, 21]. In addition, coimmuno-
precipitation studies have provided evidence that Kir6.1 and
Kir6.2 interact at a biochemical level in HEK293 cells [20,
21]. Co-assembly of Kir6.1 and Kir6.2 may not be possible in
all systems, since Seharaseyon et al. found no evidence for co-
assembly in either A549 cells or cardiac ventricular myocytes
[24]. With respect to vascular smooth muscle, however, it is
of interest that dominant negative Kir6.2 suppressed KATP
currents in the aortic-derived cell line A10 [25], where the
reported properties of the KATP channel expressed are sug-
gestive of Kir6.1 [26], consistent with co-assembly being
possible in these cells. Finally, studies in Kir6.2 knockout
mice show that both pinacidil-induced KATP currents of aor-
tic smooth muscle cells and pinacidil relaxations of aortic
rings were unaffected in the absence of Kir6.2, suggesting
that Kir6.1 alone forms the KATP channel pore in this tissue
[9]. Further investigations of the molecular basis for KATP
channel diversity in smooth muscle will form an important

area of future research, and it may be that such diversity may
also offer potential for future selective pharmacology.

Regulation by Cellular Signalling Pathways
Arterial KATP channels are regulated by multiple mecha-
nisms. In general, regulation is consistent with their meta-
bolic sensitivity and a role in adjusting blood vessel diameter
and so blood flow to tissue metabolic demand. Like KATP
channels of other tissues, they can be inhibited by intracellu-
lar ATP, though their reported sensitivity varies in different
smooth muscle preparations. The reported effects of ATP
may be complicated by the role of MgATP in maintaining
channel function, and by the effects of ATP levels on tonic
channel activation by protein kinase A, discussed below.
Since intracellular ATP levels usually change little except in
relatively severe metabolic compromise, it is more likely that
inhibition by ATP provides a background level of activity
against which other regulatory mechanisms operate. Among
these, activation by nucleoside diphosphates seems important
for many smooth muscle KATP channels [14, 15], and may
account for some of the metabolic sensitivity of such chan-
nels. The role of nucleotides in KATP channel regulation has
been reviewed recently [1]. KATP channels of vascular
smooth muscle are also regulated by a wide range of
vasodilators and vasoconstrictors. It is likely that such regula-
tion forms an important part of their control under physi-
ological conditions, and such regulation is discussed below,
with an emphasis on experiments where currents through
KATP channels have been measured directly from vascular
smooth muscle cells using the patch clamp technique.

Activation by Vasodilators
Several vasodilators have been shown to activate vascular
KATP channels, including calcitonin gene-related peptide, ad-
enosine, and b-adrenoceptor agonists [27–30]. There is good
evidence that activation by these vasodilators can occur
through the classical adenylyl cyclase-protein kinase A path-
way [30–32] (see [1] for review). In addition, intracellular
application of either cyclic AMP or the catalytic subunit of
protein kinase A (PKA) has been shown to activate KATP
channels [30–32]. Recent work, discussed below, suggests
that in addition to activation in response to binding of vaso-
dilators to their receptors, PKA exerts a tonic drive on KATP
channel activity in the absence of receptor activation. The
molecular mechanism by which PKA activates vascular KATP
channels remains to be determined. The simplest hypothesis
is that the channel is phosphorylated directly, and both Kir
and SUR subunits have consensus sites for phosphorylation
by PKA [4]. In Kir6.2, PKA phosphorylates T224 to cause
channel activation [33]. Little is known of Kir6.1 or SUR2B
in this respect, though the consensus PKA site is conserved in
Kir6.1 at T234.

Tonic Channel Activation by PKA
Most experimental work using patch clamp to study vascular
KATP channels has used a low intracellular ATP concentration
(usually 0.1 mmol/l) to reduce channel inhibition by ATP
and so increase KATP current. It has been shown recently,
however, that low intracellular ATP obscures a tonic activa-
tion of the channels by PKA, which is revealed by increasing
ATP towards physiological levels. Thus KATP current is re-
duced by block of PKA when intracellular ATP is 1 mmol/l,
but not when it is 0.1 mmol/l [34]. Such tonic activation by
PKA does not require the presence of receptor agonists. Fur-
ther, block of phosphatases with calyculin A leads to small but
significant increases in KATP current. Such tonic channel acti-



J Clin Basic Cardiol 2003; 6: 9Vascular KATP Channels

REVIEWS

vation by PKA may be important for the tonic contribution of
the channels to resting blood flow discussed below, and inhi-
bition of tonic PKA activation may also provide a new path-
way for vasoconstrictor inhibition of the channels.

KATP Channel Inhibition by Vasoconstrictors
Vasoconstrictors cause an increase in the intracellular Ca2+

concentration of vascular smooth muscle and so in contrac-
tile force, by increasing influx of extracellular Ca2+ and by
releasing Ca2+ from intracellular stores [35–37]. Closure of
K+ channels will contribute to membrane depolarization,
and therefore to increased Ca2+ entry through voltage-de-
pendent Ca2+ channels [36]. Many studies have shown that
vasoconstrictors can inhibit a variety of potassium channels
[38], and a number of vasoconstrictors have been shown to
inhibit KATP channels of vascular smooth muscle. These in-
clude angiotensin II, endothelin, vasopressin, serotonin, phe-
nylephrine, neuropeptide Y and histamine [39–42], (see [1]
for review). Several of these vasoconstrictors have been
shown to inhibit KATP channels through protein kinase C
(PKC) [41, 42], and in mesenteric artery such inhibition is
entirely prevented by the peptide translocation inhibitor of
PKC epsilon, suggesting that this is the isoform involved
[34]. Constitutively active PKC has also been shown to in-
hibit nucleotide diphosphate-sensitive KATP channels when
applied to inside-out membrane patches excised from rabbit
or rat pulmonary vein [43]. As for PKA, the means by which
PKC affects channel activity at the molecular level remains to
be determined. As for PKA, one possibility is through phos-
phorylation of Kir6.1 itself. PKC has been shown to modulate
the activity of cardiac KATP channels by phosphorylation of
threonine 180 on Kir6.2 [44], and this consensus site is con-
served at T190 in Kir6.1.

Initial studies that implicated PKC in the actions of
vasoconstrictors showed that block of PKC abolished KATP
channel inhibition by vasoconstrictors, suggesting that this
was the sole pathway for their action [41, 42]. Recent work,
however, has provided intriguing new possibilities for the
mechanisms by which vasoconstrictors may inhibit KATP
channels. The tonic KATP activation by PKA described above
raises the possibility that vasoconstrictors might inhibit such
activation. The earlier studies that showed entire dependence
on PKC were done under conditions of low intracellular ATP,
where tonic activation would have been absent, and so would
not have revealed such a pathway. When intracellular ATP is
higher, however, about half the KATP channel inhibition by
angiotensin II can be attributed to reduction in tonic activa-
tion by PKA [34]. Whether this effect involves inhibition of
adenylyl cyclase or occurs elsewhere in the pathway is cur-
rently unknown. It will also be of great interest to determine
whether inhibition of tonic PKA drive forms a widespread
pathway for the action of vasoconstrictors.

Recent work in aortic smooth muscle cells has provided
evidence that KATP channel activity can also be regulated by
the intracellular Ca2+ concentration by way of the calcium-
sensitive protein phosphatase 2B (calcineurin) [45]. KATP
currents were maximally activated when [Ca2+]i was 10 nM,
but were strongly inhibited at 300 nM. Inhibition of calci-
neurin (with cyclosporin A, FK-506, or calcineurin auto-
inhibitory peptide) increased KATP currents, even when Ca2+

was high. It is presently unclear how calcineurin exerts its
action on the channel, but it is likely to regulate the degree of
phosphorylation of a site that causes channel activation, either
on the channel itself or on an accessory regulatory protein
[45]. One possible such target is the site at which PKA acti-
vates the channel. These findings suggest another pathway
that might contribute to vasoconstrictor inhibition of KATP

channels: vasoconstrictor-induced increases in [Ca2+]i may
increase the activity of calcineurin to reduce channel activity.

Anchoring proteins and signalling complexes
The work discussed above has provided evidence that vascu-
lar KATP channels are influenced by multiple regulators, in-
cluding protein kinases A and C and protein phosphatase 2B.
The tonic activation of KATP channels by protein kinase A
suggests an intimate spatial relationship between kinase and
channel. In recent years subcellular targeting of PKA through
association with A-kinase anchoring proteins, or AKAPs, has
been shown to account for the specificity of PKA phos-
phorylation in a number of cellular pathways [46–48].
AKAPs have a conserved helical region that binds the regula-
tory (RII) subunits of the PKA holoenzyme, and an anchor-
ing domain that tethers the PKA-AKAP complex close to its
site of action. Membrane targeting of PKA by AKAPs has
been shown to be involved in the regulation of several types
of ion channel (eg [49–51]). We have recently shown that an
AKAP is involved in PKA regulation of arterial KATP channels
[52]. Ht31 peptide binds to the RII subunit of PKA with
nanomolar affinity, thus competing for PKA with native
AKAPs, and so disrupting PKA anchoring within cells [53].
Intracellular application of Ht31 peptide blocked KATP cur-
rent activation either by CGRP, which activates adenylyl cy-
clase, or by cAMP itself [52]. In addition, it prevented tonic
KATP channel activation by PKA. However, intracellularly ap-
plied PKA catalytic subunit, which should act independently
of native PKA localisation, was still able to activate KATP
channels. These findings provide strong evidence for a key
role of an AKAP in PKA-KATP channel signalling.

AKAPS do not only bind PKA. The prototypic AKAP,
AKAP79, can bind both PKC and PP2B in addition to PKA
[54]. Thus AKAPs can assemble multi-enzyme complexes
that act in concert to regulate the phosphorylation state of
cellular substrates. Such AKAP complexes may themselves be
part of large signalling complexes that may involve both up-
stream activators and downstream targets [55]. Since PKA,
PKC and PP2B are all involved in KATP regulation, it is an
attractive idea that all of these enzymes might be localised by

Figure 1. Schematic diagram of factors that regulate vascular KATP
channels. Activation pathways are shown with solid arrows and
inhibitory pathways with dotted arrows. The A-kinase anchoring
protein (AKAP) may be important in localising key regulatory
enzymes close to the channel to form a regulatory complex. Many
vasodilators act through adenylyl cyclase (AC) and PKA to cause
channel activation, while PKA also provides tonic channel activa-
tion. Vasoconstrictors acting through phospholipase C (PLC) inhibit
the channel through PKC and might also do so by activation of
PP2B or inhibition of AC. Whether these kinases and phosphatases
act directly on the channel proteins as indicated remains to be
determined, as do the detailed interactions between the regulatory
pathways and other structural elements that may link receptors,
AKAP and channel into a signalling complex.
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the same AKAP, and that their functions in regulating the
KATP channel might be integrated by anchoring into a signal-
ling complex. Figure 1 shows a hypothetical scheme for such
a complex. The identity of the AKAP involved remains to
be determined, as do possible scaffolding links between
receptors for vasoactive agonists, AKAP, and KATP channel.

Physiological and Pathophysiological Roles
Opening arterial KATP channels causes membrane hyperpo-
larization, decreased intracellular [Ca2+], and vasorelaxation,
and the mechanisms involved have been reviewed previously
[1, 36]. The following sections consider functional roles
played by KATP channels in circulatory responses under
physiological and pathophysiological conditions.

Resting Arterial Tone and Blood Flow
The initial evidence that vascular KATP channels have the po-
tential to contribute to vasodilation came from studies that
preceded the identification of the channels. A series of phar-
macological agents including nicorandil, cromakalim, and
pinacidil proved to be effective vasorelaxants of systemic and
coronary blood vessels [56–62]. These drugs caused mem-
brane hyperpolarization of smooth muscle, increased 86Rb or
42K efflux, and were ineffective at relaxing vessels constricted
with high extracellular [K+], consistent with their acting by
opening K+ channels. They are now generally named K+

channel openers. Following the demonstration that KATP
channels occurred in smooth muscle, it became clear that
these openers exert their hyperpolarizing and vasorelaxant
effects by activating these KATP channels (see [1] for review).
More recently, pharmacological KATP channel openers have
been shown to increase blood flow or decrease vascular tone
in the systemic [63, 64], coronary [63, 65, 66], and pulmo-
nary [64, 67, 68] circulations. These studies with KATP open-
ers demonstrate the potential of KATP channel activation to
contribute to vasodilation under physiological conditions.

Over the past ten years substantial evidence has accumu-
lated that KATP channels contribute a tonic vasodilator com-
ponent in the coronary and systemic circulations, so contrib-
uting to blood flow at rest. Much of this evidence has come
from studies of the effects of KATP channel inhibition with
the sulphonylurea blocker glibenclamide on tone, vascular
resistance or blood flow. Thus glibenclamide has been shown
to increase vascular resistance in mesenteric and renal vascu-
lar beds [69–71]. KATP channels have also been reported to
influence resting vascular tone in the skeletal muscle bed in
some preparations [70, 72–74], but not in others [64, 75–77].
In the pulmonary circulation, evidence for functional KATP
channels comes from vasodilator responses to KATP channel
agonists in a number of species [64, 67, 68, 78, 79], and
glibenclamide has been reported to decrease pulmonary vas-
cular conductance in newborn piglets [68]. However, KATP
channel blockade did not affect pulmonary vascular conduct-
ance in rats, cats, dogs or adult pigs, suggesting that these
channels make little contribution to the regulation of basal
pulmonary vascular tone [67, 76, 79].

Much experimental work has concentrated on the contri-
bution of KATP channels to basal coronary blood flow, and
here there is good evidence that a substantial component of
resting flow depends on KATP channel activity. In anaesthe-
tised dogs, glibenclamide can increase coronary resistance by
up to 67 % [80–83], while equivalent responses have been re-
ported in the coronary circulation of isolated hearts from rab-
bits, rats and mice [84–86]. Experiments on chronically im-
planted awake dogs and pigs at rest are consistent with these
findings: here glibenclamide also increased coronary vascular

resistance [66, 79]. Together, this work suggests that KATP
channels in the coronary vasculature are tonically active un-
der basal conditions, and contribute a degree of vasodilation
that is important for resting blood flow.

Studies on Genetically Altered Mice
Two recent studies on mice in which genes encoding KATP
channel subunits were disrupted have given important
insights into both the role and composition of arterial KATP
channels. Disruption of the gene encoding Kir6.1 abolished
pinacidil-activated currents in aortic smooth muscle cells and
also abolished vasodilator responses to pinacidil, suggesting
that this subunit is an essential component of arterial KATP
channels [87]. Kir6.1-null mice had a high rate of sudden car-
diac death associated with spontaneous elevation of the ST
segment in the electrocardiogram followed by atrioventricu-
lar node block, indicative of periods of cardiac ischaemia re-
sulting from coronary arterial vasospasm. The vasoconstric-
tor ergometrine induced ST elevation followed by cardiac
death in Kir6.1 mice, but not in wild-type animals [87]. Thus
the Kir6.1-null animals have hypercontractile coronary arter-
ies, consistent with a critical role for the KATP channel in
regulating vascular tone and in protecting against vasospasm.
Very similar effects are seen in mice with disruption of the
gene encoding SUR2 [88]. SUR2-null mice also lack vascu-
lar KATP channels and show ST segment elevation, coronary
vasospasm and sudden cardiac death. Focal narrowing of
coronary arteries was also observed in these animals. In addi-
tion, SUR2-null mice have significantly elevated resting
blood pressure [88]. Together, these genetic studies confirm
the results of pharmacological studies in intact animals in in-
dicating the importance of KATP channels for regulating vas-
cular tone and so blood pressure and blood flow.

Vasodilator Responses to Metabolic Demand and Exercise
In many vascular beds, blood flow is closely correlated to
metabolic demand. Thus local vasodilator signals released by
metabolically active tissue lead to adjustments of blood vessel
diameter to provide appropriate blood flow. These signals
may include falls in oxygen tension, falls in pH and release of
local regulators such as adenosine and prostacyclins. KATP
channel activation appears important in hypoxic vasodilation
in the coronary circulation and several other vascular beds.
Recent studies of reactive hyperaemia in both the guinea-pig
heart and human forearm suggest that KATP channels play an
important role in post-ischaemic vasodilation [89, 90]. The
role of KATP channels in the cerebral circulation has been re-
viewed recently by Faraci and Heistad [91]. Here, though
KATP channels are clearly present and functional in many ves-
sels, a number of studies have provided little evidence for a
role of KATP channels in resting tone. However, several en-
dogenous substances, including EDHF, CGRP, prostacyclin,
opioids, and adenosine, that hyperpolarize and relax cerebral
vascular smooth muscle, appear to do so via activation of
KATP channels. Similarly, several studies have suggested that
KATP channels may contribute to cerebral vasodilation in re-
sponse to hypoxia [92–97] and KATP channels may also con-
tribute to cerebral vascular autoregulation [98].

The roles of KATP channels in metabolic vasodilation sug-
gests that they might be involved in circulatory responses to
the increased metabolic demands induced by exercise. There
have been relatively few studies in this area, but work on ex-
ercising dogs has provided interesting results. KATP channel
blockade with glibenclamide reduced resting coronary blood
flow and the reactive increase in blood flow in response to
ischaemia, but did not prevent exercise-induced vasodilation
[66]. However, when adenosine receptors were inhibited,
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blockade of KATP channels blunted exercise-induced coro-
nary vasodilation [99], an effect that became very severe
when nitric oxide (NO) synthase was inhibited as well [100].
Neither adenosine nor nitric oxide-dependent mechanisms
appear obligatory for maintaining either resting coronary
flow or the increase in coronary flow on exercise, since these
parameters were unaffected by blockade of both pathways
[100]. The findings suggest that KATP channels are important
for maintaining coronary vasodilation during exercise under
normal conditions, but that adenosine and NO can act to in-
crease coronary blood flow in exercise when KATP channels
are blocked [100]. Interestingly, hypertrophied hearts seem
to have an increased dependence on KATP channel opening to
increase coronary blood flow in exercise, since here
glibenclamide alone blunted the exercise-induced increase in
flow [101]. A recent study has extended these investigations
to the systemic and pulmonary circulations in exercising pigs.
This work showed that KATP channel activation contributed
to vasodilation both at rest and during exercise in the sys-
temic as well as coronary circulations, but was not essential
for exercise-induced vasodilation. In contrast, pulmonary
vascular conductance was unaffected by glibenclamide, either
at rest or in exercise [79].

Shock
Circulatory shock is characterized by hypotension, low sys-
temic resistance and inadequate tissue perfusion, and vascu-
lar hyporesponsiveness to vasoconstrictors. Activation of po-
tassium channels in the peripheral circulation seems impor-
tant in the refractory vasodilation of shock, since K+ channel
blockers have been shown to reduce such vasodilation [2,
102]. In particular, there is considerable evidence that in-
creased activity of KATP channels occurs in both endotoxic
and haemorrhagic shock.

In 1992 Landry and Oliver provided the first evidence for
a role of KATP channels in the vasodilation induced by shock,
showing that glibenclamide caused vasoconstriction and re-
stored blood pressure in dogs with endotoxic hypotension
[103]. Since then studies in rat and pig models in which
shock is induced with bacterial endotoxins (lipopolysaccha-
rides) have also shown at least partial restoration of arterial
pressure by glibenclamide [104–108]. In the conscious rat,
the major effect of glibenclamide on haemodynamics appears
to be in the hindquarters vascular bed, where vascular resist-
ance is increased and flow reduced [107]. Glibenclamide also
abolished endotoxin-induced hyporesponsiveness to phe-
nylephrine in rats [108]. Additional evidence for involve-
ment of KATP channels comes from experiments showing
that vasorelaxations to the KATP channel openers cromakalim
and pinacidil were enhanced in endotoxic shock, consistent
with an increase in KATP channel activity under such condi-
tions [108]. Aortic smooth muscle from endotoxaemic rats
has recently been shown to have a hyperpolarized membrane
potential compared to control animals, and this hyperpolari-
zation was partially reversed by blockers of either KATP or
large-conductance Ca2+-activated K+ channels [109].

Blockade of KATP channels has also been reported to be
beneficial in haemmorhagic shock. In anaesthetized rats sub-
jected to severe haemorrhagic shock, glibenclamide increased
arterial pressure [110, 111] and also improved survival rate
[110]. In similar experiments using pigs, glibenclamide
caused a sustained recovery of blood pressure, improved a
number of haemodynamic variables, and restored tissue
perfusion and metabolism to pre-shock levels [112]. In rats,
glibenclamide has also been reported to reverse shock-in-
duced arteriolar smooth muscle hyperpolarization and to im-
prove intracellular Ca2+ responses and vascular hypo-

responsiveness to noradrenaline [113], but not to affect
hyporesponsiveness to angiotensin II [111].

Together, these findings provide good evidence that the
activity of KATP channels is increased in circulatory shock, but
the mechanism by which this occurs is still unclear. There is
substantial evidence that increased synthesis of NO contrib-
utes to the vascular hypotension and hyporeactivity of shock
[102, 114]. One possibility is that this leads to KATP channel
activation via nitric oxide (NO) and cGMP. NO has been
shown to cause glibenclamide-sensitive membrane potential
hyperpolarization in rat and rabbit mesenteric arteries [115,
116], and may also play a role in hypoxic dilation of pial arter-
ies [97, 117]. NO has also been reported to activate KATP chan-
nels in cultured smooth muscle cells [118]. However, studies
in freshly isolated cells from rabbit mesenteric or pig coronary
arteries failed to find KATP channel activation by NO or NO
donors [30, 31]. In addition, glibenclamide did not inhibit
NO donor-induced vasodilation in normal animals [103,
119]. A common theme in these studies has been the use of
glibenclamide to define the involvement of KATP channels.
Two recent brief reports suggest that KATP channels may have
an altered pharmacology in endotoxaemia. Thus the com-
pound PNU-37883A, which blocks KATP channels by inter-
action with the pore-forming subunit rather than the sulpho-
nylurea receptor, inhibited both hyporeactivity to phenyle-
phrine and relaxations to L-arginine in lipopolysaccharide-
pretreated rat mesenteric artery or aortic rings under condi-
tions where glibenclamide was ineffective [120, 121]. The
suggestion that endotoxaemia can reduce KATP channel sensi-
tivity to glibenclamide, maybe through an action of NO, indi-
cates that the possibility of KATP channel activation by NO re-
quires further experimental study using pore-blocking agents.

CGRP levels are also increased in shock, and can contri-
bute to shock-induced hypotension [122–124]. Since CGRP
is a potent activator of KATP channels, it may also contribute
to their activation in shock. A further possibility is that tissue
metabolic changes might contribute to KATP channel activa-
tion, since lactic acidosis-induced hypotension in dogs could
also be reversed by glibenclamide [103]. Finally, in addition
to acute activation of KATP channels by one or all of these
mechanisms, it is also possible that they affect gene regulation
to upregulate KATP channel expression in shock.

Clinical Pharmacology
Both KATP channel opening and blocking drugs are used
clinically, though vascular KATP channels are not always their
intended target. Openers include the antihypertensives dia-
zoxide and minoxidil sulphate, and the anti-anginal drug
nicorandil which is currently in increasing use in Europe. In
theory, at least, KATP channel openers might be expected to
have advantageous properties in the treatment of ischaemic
conditions like angina. The intrinsic metabolic sensitivity of
vascular KATP channels should increase channel open prob-
ability in ischaemic tissue. If the action of KATP channel
openers is synergistic with such intrinsic activation, such
openers should have a self-targetting property, being more
effective as vasodilators in ischaemic tissue. Studies on isolated
coronary arteries suggest that this is the case for nicorandil
[125]. Nicorandil also combines a nitrovasodilator action
with its KATP channel opening properties, and this may con-
tribute to a combination of rapid onset of action with lack of
the development of the tolerance seen with classical nitro-
vasodilators [126]. Further interest in the drug has come
from recent evidence that it is able to confer cardioprotection
similar to that induced by ischaemic preconditioning [126],
an effect that appears to be mediated by cardiac rather than
vascular KATP channels.
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KATP channels of pancreatic beta cells form the therapeu-
tic target for a widely-used family of drugs, the antidiabetic
sulphonylureas. While such drugs show selectivity for the
beta-cell form of the channel, they can block cardiac and vas-
cular KATP channels at higher concentrations, and there has
been a long-standing controversy as to whether this may con-
tribute to possible adverse cardiovascular effects associated
with sulphonylurea therapy for type 2 diabetes [127, 128].

Conclusions and Future Perspectives
We have accumulated a large amount of information about
vascular KATP channels since they were discovered. However,
important questions remain to be answered. Definitive infor-
mation on molecular structure and the relationship between
structure and the variations in KATP channel properties in
smooth muscle will be an important goal. Achieving a full
understanding of KATP channel regulation by cellular signal-
ling pathways will be a major task, given the complexity that
is already becoming apparent. It is likely that such an under-
standing will require information about the structural as well
as functional relationships between the components of the
signalling complexes involved. Functional studies in intact
tissues and whole animals will also continue to be important
in further defining the functional roles of vascular KATP
channels. These should benefit from developing understand-
ing of the channels and their regulation at a molecular and
cellular level. Recent evidence suggests that the use of pore
blocking drugs as well as KATP channel inhibitors will be im-
portant to help define these functions. As information about
channel regulation becomes more precise, it is very likely that
transgenic animals developed in the light of such knowledge
will also play an important apart in elucidating channel func-
tion. Increased understanding of the regulation and functions
of these channels should also have the potential to improve
clinical practice in situations where they are involved, either
to positive effect as in angina, or negatively as in shock. In the
longer term, it is possible that new drugs designed to target
aspects of KATP channel regulation may prove to be valuable
therapeutic agents.
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