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Intercellular Fusion
in the Human

In human, the phenomenon of cell-
cell fusion occurs in several different
cell types. During fertilization, after
penetration of the zona pellucida
and entry of the sperm into the egg’s
perivitelline space, fusion of the egg
and sperm cell membranes takes
place [1]. Macrophages can differen-
tiate and fuse to form multinucleated
chondroclasts and osteoclasts [2],
which are important for cartilage and
bone development and remodelling.
Macrophages are also able to fuse
into giant cells important in immune
defense. During embryonic develop-
ment of skeletal muscle, mononu-
cleated myoblasts fuse to form multi-
nucleated myotubes. Even in the
adult skeletal muscle satellite cells
fuse with skeletal muscle fibers. In
the human placenta, villous tropho-
blasts fuse to generate the character-
istic multinucleated syncytial layer,
the syncytiotrophoblast. Extravillous
trophoblasts differentiate and fuse to
generate the trophoblastic giant cells
characteristic for the decidua basalis
during pregnancy.

Human Trophoblast

Arising from the trophoblast of the
blastocyst, two trophoblast popula-
tions differentiate early during gesta-
tion. Extravillous trophoblasts leave
the basal membrane of anchoring
villi and invade the tissues of the ma-
ternal decidua basalis to attach the
placenta to the uterus and to re-
model maternal spiral arteries.

The second population is the villous
cytotrophoblast, which upon specific
stimulation differentiate and fuse
with the covering syncytiotropho-
blast. The multinucleated syncytio-
trophoblast in concert with the un-
derlying mononucleated cytotropho-
blasts are located on a basement
membrane and constitute the villous
trophoblast, the epithelial-like layer
of the placental villous tree. Some of
the cytotrophoblasts are trophoblast
progenitor cells and divide in an
asymmetric way. While one daughter
cell retains its progenitor character,
the other is destined for differentia-
tion. The final differentiation stage of
a cytotrophoblast is fusion with the
syncytiotrophoblast. This way, cyto-
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trophoblast derived nuclei and other
organelles, proteins and RNA as well
as cytoplasm and membranes are
transferred into the syncytiotropho-
blast.

Experiments using 3H-thymidine in-
corporation revealed that DNA syn-
thesis does not occur in syncytio-
trophoblast, implying that syncytial
nuclei are unable to replicate [3]. In
addition, 3H-uridine incorporation
experiments showed that the syncy-
tiotrophoblast is mostly lacking RNA
synthesis [4]. Taking in consideration
that the syncytiotrophoblast does not
replicate and shows only little tran-
scriptional activity, the mechanism
of fusion with cytotrophoblasts be-
comes highly important. The integ-
rity of the syncytiotrophoblast de-
pends on continuous fusion and de-
livery of cytotrophoblast derived cy-
toplasmic contents throughout preg-
nancy.

At the same time acquisition of fresh
cellular material requires deposition
of aged cytosolic content to keep
the biological balance of the syncy-
tium. Apoptotic material is packed in
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membrane sealed vesicles – the so
called syncytial knots – and is re-
leased from the apical cytoplasmic
membrane of the syncytiotropho-
blast into the maternal circulation.
Hence, the turnover of villous tro-
phoblast in a placental villus is simi-
lar to the turnover in stratified epithe-
lia and includes proliferation, differ-
entiation, fusion and controlled re-
lease of apoptotic material (Fig. 1).

To study the fusion process between
trophoblasts in greater detail in vitro
the BeWo cell model has attracted a
great deal of attention. The BeWo
cell line is a choriocarcinoma cell
line, which shows intercellular fu-
sion when stimulated with forskolin
[5]. Treatment of BeWo cells with
this reagent leads to formation of
multinucleated cells (syncytia) and
an increase in the expression of hu-
man chorionic gonadotropin (hCG).
Syncytialization can be visualized by

staining these cells with membrane
associated proteins such as desmo-
plakin or E-cadherin (Fig. 2).

Regulation of Trophoblast
Differentiation

Since cytotrophoblasts can either ac-
quire the extravillous (invasive path-
way) or the villous (syncytial path-
way) phenotype, it is apparent that
differentiation has to be strictly regu-
lated. Factors that are involved in
governing these pathways are cyto-
kines and growth factors derived
from the maternal and fetal environ-
ment. The first growth factor de-
scribed to induce syncytialization
has been epidermal growth factor
(EGF) leading to secretion of the hor-
mones hCG and human placental
lactogen (hPL) [6]. Colony stimulat-
ing factor (CSF) and granulocyte-
macrophage colony-stimulating fac-

tor (GM-CSF) have also been demon-
strated to trigger syncytialization and
hCG synthesis [7]. Moreover, trans-
forming growth factor (TGF)-α and
leukemia-inhibitory factor (LIF) have
been suggested to promote syn-
cytialization and production of hCG
[8]. Interestingly, hCG itself, pro-
duced by the syncytiotrophoblast
can act as inducer of cytotrophoblast
differentiation [8, 9]. In contrast,
transforming growth factor (TGF)-β
inhibits syncytial formation as well
as secretion of hCG and hPL [10].
Also tumor necrosis factor (TNF)-α
impairs syncytium formation of pri-
mary term trophoblasts in vitro and
represses hCG synthesis by down-
regulation of β-hCG subunit expres-
sion [11].

When environmental factors bind
to their receptors on target tropho-
blasts, mitogen-activated protein
kinases (MAPKs) may be activated
which in turn regulate complex pro-
grams of cell differentiation. Two
classical MAPKs, the extracellular
signal-regulated kinase1/2 (ERK1/2)
and p38, are implicated to play sig-
nificant roles in initiation of tropho-
blast differentiation and fusion. Stud-
ies employing specific ERK1/2 and/
or p38 inhibitors to primary tropho-
blast cultures revealed impaired
differentiation and syncytialization
[12].

Another potential key player in regu-
lating intercellular trophoblast fusion
is protein kinase A (PKA). Trans-
fection of the catalytic subunit of
PKA into BeWo cells demonstrated
that PKA activity is sufficient to in-
crease BeWo cell fusion [13]. Activa-
tion of the PKA pathway led to a
diminution of the desmosomal pro-
tein desmoplakin and an increase of
nuclei within syncytia. Stimulation
of PKA with either forskolin or cAMP
(both induce fusion) upregulated
transcription of the transcription fac-
tor glial cell missing a (GCMa) [13],
which belongs to the family of zinc-
containing transcription factors [14].

Initial overexpression experiments
indicated a functional role of human
GCM in nervous system develop-
ment and gliogenesis in Drosophila
and mammals [15, 16]. However, in
the human nervous system GCMa
was not detected in significant
amounts, but was rather present in
mammalian placenta [17, 18]. In hu-

Figure 1. Schematic representation of trophoblast differentiation within the villous trophoblast.
Derived from trophoblast progenitor cells daughter cells start to differentiate and finally fuse
with the overlying syncytiotrophoblast. Nuclei that have become an integrative part of the syn-
cytiotrophoblast change their morphology and display chromatin condensation. Finally late
apoptotic syncytial nuclei are packed into syncytial knots and are released into the maternal
blood stream. The arrows follow the route of cell types and nuclear changes during trophoblast
differentiation.

Figure 2. A) Immunofluorescent staining of
human first trimester placenta (week 8).
Mononucleated cytotrophoblasts (arrow)
show staining for E-cadherin in their apical
and lateral cell membranes (red). The over-
lying multinucleated syncytiotrophoblast
(arrowhead) lacks lateral cell walls and is
negative for E-cadherin. The syncytiotro-
phoblast expresses hCG (green). B) and C)
Immunofluorescent staining of forskolin and
vehicle treated BeWo cells. Treatment of
BeWo cells for 48h with forskolin (20 μM)
induced formation of multinucleated syn-
cytia, visualized by degradation of E-
cadherin (stained in red). hCG expression
(green) was predominantly observed in syn-
cytia of forskolin treated BeWo cells, but
was also rarely seen in mononucleated
BeWo cells (treated and untreated).
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man placenta, expression of GCMa
is restricted to a subset of villous
cytotrophoblasts and is implicated to
be associated with trophoblast differ-
entiation [19]. The involvement of
GCMa in trophoblast fusion is sub-
stantiated by knockdown experi-
ments, revealing that specific GCMa
targeting led to diminished intercel-
lular fusion in BeWo cells. GCMa
knockout mice show defective pla-
cental labyrinth formation and em-
bryonic lethality, implying an inte-
gral role of this transcription factor in
placental development [20]. So far,
two placental target genes are de-
scribed for GCMa. One is human
aromatase [21] and the second is hu-
man syncytin 1 [22], which is sup-
posed to trigger membrane fusion.

Membrane Proteins Involved
in Trophoblast Fusion

Though syncytialization is an event
of membrane fusion, it is obvious
that membrane proteins are involved
in triggering the interaction of the
two different plasma membranes.
One membrane protein playing a
key role in trophoblast fusion seems
to be syncytin 1. Syncytin 1 is a trans-
membrane protein encoded by an
envelope gene of an endogenous
retrovirus of the HERV-W family
[23]. When functional, it consists of
a transmembrane unit and an extra-
cellular domain exposed on the sur-
face of the cell. Initial experiments
revealed that overexpression of
syncytin 1 in COS cells resulted in
the formation of multinucleated syn-
cytia [23]. In primary cytotropho-
blasts, expression of syncytin 1 was
upregulated when cells were stimu-
lated with a cAMP analogue, which
is known to induce fusion [24]. In
contrast, silencing of syncytin 1 in
primary trophoblasts inhibited syn-
cytialization, substantiating an in-
strumental role of syncytin 1 in tro-
phoblast fusion [24].

Interestingly, screening of retroviral
sequences in the human genome for
potential other viral envelope encod-
ing genes revealed a second fuso-
genic gene product termed syncytin
2. Syncytin 2 is encoded by an endo-
genous retroviral envelope gene,
which belongs to the HERV-FRD
family [25]. So far no fusogenic
properties have been allocated to
syncytin 2.

The question how morphology and
physiology of the human placenta
would have proceeded without inte-
gration of retroviruses into the hu-
man genome is rather speculative
and remains unsolved. However, the
fact that syncytin 1 is abundantly
expressed in placental trophoblast,
but is suppressed by CpG methyla-
tion in non placental cells [26] em-
phasizes the important role of this
protein in placental development.
The combined action of the two syn-
cytins may well have been important
for the evolution of the human pla-
centa with syncytin 1 being crucial
for trophoblast fusion and syncytin 2
displaying immunosuppressive ac-
tivities [27].

Though syncytin 1 and 2 are factors
involved in placental syncytializa-
tion and immunosuppression, rare
and rather controversial information
is available on their localization in
the human placenta. In situ hybridi-
zation detected syncytin 1 mRNA in
the syncytiotrophoblast [23]. In con-
trast, the syncytin 1 protein was lo-
calized in either in the syncytiotro-
phoblast alone [23], in the syncytio-
trophoblast and some villous cyto-
trophoblasts [28], or in villous cyto-
trophoblasts and extravillous tropho-
blasts [29]. Varying antibody clones,
staining protocols and tissue han-
dling may have given rise to these
discrepancies.

So far, two receptors have been de-
scribed for syncytin 1, the amino
acid transporters ASCT1 and ASCT2
[30]. They are sodium dependent
transporters of neutral amino acids
such as alanine, cysteine and serine
[31]. Both mRNAs were detected in
placenta, but ASCT1 expression was
faint [32]. The ASCT2 protein, also
designated as type-D retrovirus
receptor (RDR) or amino acid trans-
porter B0 (ATB0), was localized ex-
clusively in the cytotrophoblast [33].

Yet another putative amino acid
transporter, the CD98 antigen was
demonstrated to be important in tro-
phoblast fusion [34]. CD98, also
known as FRP-1 and 4F2, is a hetero-
dimeric integral membrane protein,
consisting of a heavy chain and a
covalently attached light chain. The
role of CD98 in membrane fusion is
substantiated by the fact that its ex-
pression is required for virus induced
cell fusion, as well as osteoclast for-

mation [35]. In human trophoblast
derived BeWo cells, knockdown of
CD98 expression by antisense and
siRNA techniques suppressed cell fu-
sion [34, 36]. Interestingly, treatment
of BeWo cells with the fusion induc-
ing reagent forskolin led to an in-
creased expression of CD98 [37]. In
the human placenta, CD98 was de-
tected in cytotrophoblast and the
syncytiotrophoblast [38]. The pro-
posed ligand of CD98 is galectin 3,
which is expressed in epithelial and
immune cells [39]. Co-immunopre-
cipitation in BeWo lysates clearly
demonstrates binding of galectin 3 to
CD98 in vitro [37]. Galectin 3 is sug-
gested to bind to glycosylated sites of
CD98 by its carbohydrate recogni-
tion domain. Experiments with lac-
tose, which binds with high affinity
to lectins, revealed an inhibition of
galectin 3 binding to CD98 and de-
creased fusion in BeWo cells [37].
Like CD98, galectin 3 was detected
in both cytotrophoblasts and syncy-
tiotrophoblast of the human placenta
[40].

Gap junctional communication be-
tween cytotrophoblasts and the syn-
cytiotrophoblast was shown to be
important for syncytialization [41].
Gap junctions are composed of clu-
sters of connexin hexamers, which
act as transmembrane channels. In
the human placenta, connexin 43
(Cx43) was detected between cyto-
trophoblasts and between cytotro-
phoblasts and the syncytiotropho-
blast [42]. Studies with heptanol, a
non specific junctional uncoupler
blocking all connexin channels, dis-
played inhibited intertrophoblastic
communication and a decrease in
syncytiotrophoblast formation [43].
Antisense oligonucleotides targeted
against Cx43 mRNA resulted in poor
cytotrophoblast fusion and de-
creased hCG secretion [44]. Hence,
Cx43 is directly involved in inter-
trophoblastic communication, differ-
entiation and fusion.

Proteases

Remodelling of membranes and cy-
toskeletal proteins are crucial steps
in the process of intercellular fusion.
Proteins of the sub-membranous cy-
toskeleton are degraded by proteases
to prepare defined areas of the
plasma membrane for fusion. Some
of the proteases involved in tro-
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phoblast fusion are family members
of the caspase family. The majority
of caspases is basically known to
drive apoptosis, but recent studies
revealed key functions of such cas-
pases in cell differentiation [45–47].
The term caspase (cysteine aspartase)
arises from the proteolytic behaviour
of this protease family. Caspases are
cysteine proteases (use cysteine as
the nucleophilic group for substrate
cleavage) as well as aspases (cleave
the peptide bond C-terminal to as-
partic acid residues). In the human
placenta, caspase 8 is implicated to
play a key role in differentiation of
cytotrophoblasts and subsequent fu-
sion with the syncytiotrophoblast [4,
48]. When specific peptide inhibi-
tors or antisense oligonucleotides
interfering with caspase 8 activity
or transcription, respectively, were
added to first trimester villous ex-
plant cultures, syncytialization was
blocked [48]. Active caspases 8 and
10, which are activated by cleavage
of their proenzyme states, were de-
tected in a subset of differentiated
cytotrophoblasts [4]. Recently, cas-
pase 14 was suggested to participate
in trophoblast fusion. Forskolin
stimulated BeWo cells showed in-
creased expression of caspase 14,
while treatment with staurosporine
and induction of apoptosis had no
effect on caspase 14 expression [49].

Other candidate proteins facilitating
intercellular fusion are members of
the ADAM (a disintegrin and a
metalloproteinase domain) family.
ADAM proteins contain disintegrin
and metalloproteinase domains and
many of them also comprise putative
hydrophobic fusion peptides, which
mediate cell-cell fusion [50, 51].
Two members of this family, fertilin α
and β (ADAM 1 and 2), were shown
to be involved in murine sperm-egg
fusion [52]. In human, fertilins are
not functional in fertilization [53].
However, other members of the
ADAM family, the meltrins, were
suggested to trigger fusion, as shown
for meltrin α (ADAM12) in myoblast
fusion [54] and osteoclast formation
[55]. In the human placenta two
splice variants of ADAM12 were de-
tected by northern blots [56]. One
long transcription variant, which in-
cludes a transmembrane domain,
was designated as ADAM12-L. The
alternative short splice variant,
ADAM12-S, lacks the membrane an-
chor and is the secreted isoform.

ADAM12 is located in cytotropho-
blasts and apical areas of the syncy-
tiotrophoblast in first trimester pla-
centa. At term, immunohistochemis-
try revealed positive staining of cyto-
trophoblasts [57]. However, immu-
nohistochemistry alone is not suffi-
cient to demonstrate a direct fuso-
genic potential of ADAM12. Func-
tional fusion assays are pending to
elucidate this issue.

Plasma Membrane Architecture

Plasma membranes of human cells
are bilayers of asymmetrically dis-
tributed phospholipids. While neu-

tral cholinephospholipids (e.g. phos-
phatidylcholine, PC) are predomi-
nantly located in the outer leaflet,
negatively charged aminophospho-
lipids (phosphatidylethanolamine,
PE and phosphatidylserine, PS) are
located in the inner leaflet [58]. The
membrane asymmetry is actively
maintained by an aminophospho-
lipid translocase, which handles mis-
directed PE and PS from the outer
leaflet back to the inner leaflet [58,
59]. These translocases (flippases)
are inactivated by caspases [60] and
consequently the asymmetry can no
longer be maintained. Pronounced
PS externalization to the outer leaflet
was observed prior to fusion events

Table 1. Factors that promote (+) or impair (–) fusion of trophoblasts. Evidence for involvement
of listed fusion factors were provided either in BeWo cells (B), villous explants (VE) or isolated
primary trophoblast cells (T). (?) indicates that functional fusion assays, demonstrating a role
of this factor in fusion, are pending.

Growth factors, hormones and cytokines

EGF growth factor + T [6]
CSF growth factor + T [7]
GM-CSF growth factor + T [7]
TGF-α growth factor + T [8]
LIF cytokine + T [8]
hCG peptide hormone + T [8, 9]
TGF-β growth factor – T [10]
TNF-α cytokine – T [11]

Protein kinases and transcription factors

ERK1/2 mitogen activated protein kinase (MAPK) + T [12]
p38 mitogen activated protein kinase (MAPK) + T [12]
PKA protein kinase + B [13]
GCMa transcription factor + B [22]
Mash-2 transcription factor – T [74]

Membrane proteins

Syncytin 1 endogenous retroviral envelope protein + T, B [23, 24]
Syncytin 2 endogenous retroviral envelope protein ? [25]
ASCT1 amino acid transporter ? [30–32]
ASCT2 amino acid transporter + B [30–32]
CD98 amino acid transporter + B [34, 36]
Galectin 3 lectin + B [37]
Connexin 43 gap junction protein + T [44]

Proteases

Caspase 8 protease + VE [4, 48]
Caspase 10 protease ? [4]
Caspase 14 protease ? [49]
ADAM12 protease ? [57]

Membrane architecture

PS flip externalization of PS to outer leaflet of
membrane bilayer + B [63–65]

ABCG2 xenobiotic/lipid transporter ? [67]

Physicochemical factors

hypoxia low oxygen tension – T, B [71–73]
calcium + B [78]
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such as myotube formation [61],
membrane fusion of sperm and egg
[62] and trophoblast syncytialization
[63]. The assumption that PS exter-
nalization, the so-called PS-flip, is
a prerequisite of intertrophoblastic
fusion was substantiated by in vitro
experiments using monoclonal anti-
phosphatidylserine antibodies. Fu-
sion efficiency of stimulated chori-
ocarcinoma cells was decreased
when these antibodies were addi-
tionally applied [64, 65]. However,
these antibodies do not recognize
phospholipids alone, but usually re-
quire a co-factor (e.g. beta-2-glyco-
protein I) for sufficient binding [66].
Therefore, it is likely that protein-
lipid complexes trigger syncytial fu-
sion rather than PS externalization
alone.

Recently, the xenobiotic/lipid trans-
porter ABCG2, a member of the ATP
binding cassette (ABC) family, was
suggested to play a role in counter-
balancing the increased PS externali-
zation during trophoblast fusion
[67]. Indeed, ABC transporters have
been implicated to regulate phos-
pholipid asymmetry by trafficking
structural lipids within plasma mem-
branes [68, 69]. ABCG2 was shown
to be up-regulated during tropho-
blast fusion [70]. Knockdown of
ABCG2 with siRNA increased PS ex-
ternalization and resulted in higher
rates of apoptosis in forskolin in-
duced BeWo differentiation [67].
Thus, ABCG2 was hypothesized to
protect cells as survival factor during
the period of asymmetry and reor-
ganization of the plasma membrane
during trophoblast syncytialization.

Physicochemical Factors

Several in vitro studies demonstrated
an inhibitory effect of low oxygen
tension on trophoblast fusion and
differentiation. An oxygen concen-
tration of approximately 9 % im-
paired fusion of isolated cytotro-
phoblasts and led to decreased hCG
and hPL expression [71]. Forskolin
stimulated BeWo cells, cultured un-
der low oxygen tensions (2 % oxy-
gen) showed suppressed intercellular
fusion [72], which was associated
with relatively lower expression of
syncytin and its receptor compared
to control conditions (20 % oxygen)
[73]. Additionally, hypoxia was dem-
onstrated to affect expression and ac-

tivity of transcription factors. Studies
with isolated primary trophoblasts
revealed an oxygen dependent effect
on the basic helix-loop-helix tran-
scription factor Mash-2 (mammalian
achaete/scute homologue 2) [74].
While transcription of Mash-2 was
down-regulated in primary tropho-
blasts cultured at 20 % oxygen, its
expression was increased at 2 %
oxygen. The fact that overexpression
of Mash-2 markedly inhibited tro-
phoblast fusion [74] substantiated
the inhibitory effect of low oxygen
via Mash-2 on intercellular fusion.

Environmental calcium ions are re-
quired for fusion of artificial as well
as biological membranes [75]. Vari-
ous cell fusion experiments using
cells overexpressing viral envelope
glycoproteins emphasized the re-
quirement of an appropriate extra-
cellular calcium ion concentration
[76, 77]. Cells expressing the human
immunodeficiency virus type 1 (HIV-
1) envelope glycoprotein (gp120-
gp41) and its receptor CD4 only
fused when calcium (millimolar con-
centration range) was supplemented
to the culture medium. In contrast,
the addition of calcium chelators
(EDTA, EGTA) inhibited syncytium

formation in a concentration de-
pendent way [76]. Considering the
fact that trophoblast fusion is medi-
ated by syncytin 1, which is an endo-
genously expressed retroviral enve-
lope protein, it is tempting to specu-
late that trophoblastic syncytializa-
tion requires extracellular calcium.
BeWo cells, known for their fuso-
genic potential, also require calcium
for spontaneous, as well as forskolin
induced intercellular fusion [78]. Pri-
mary cytotrophoblasts isolated from
first trimester placenta remain in a
mononuclear state when cultured in
culture medium containing low cal-
cium concentrations [79].

Conclusions

Fusion of cytotrophoblasts with the
overlying syncytiotrophoblast is cru-
cial for expansion, maintenance and
functionality of the placental epithe-
lium-like layer, the villous trophob-
last. An increasing number of factors,
involved in intertrophoblastic fusion,
emerged in the recent past (Tab. 1).
They comprise proteins with diverse
cellular functions, but also include
“non-protein” factors such as cal-
cium concentration, oxygen tension

Figure 3. Illustration of factors involved in trophoblast fusion. Environmentally derived growth
factors, hormones and cytokines bind to their cognate receptors at the plasma membrane of
cytotrophoblasts. Activation of either protein kinase A (PKA) or MAP kinases ERK1/2 and p38
leads to increased protein expression of the transcription factor GCMa, which in turn drives
transcription of fusogenic genes. Several structural and membrane proteins were suggested to
promote trophoblast fusion, including syncytin 1 and its receptor ASCT2 (1), CD98 and its receptor
galectin 3 (2) as well as connexin 43 (3). Beside activation of PKA or MAP kinase pathways,
cytokines induce conversion of pro-caspase 8 into active caspase 8. Once activated, caspase 8
can mediate inactivation of “flippases” and/or activation of “floppases” to trigger phosphatidyl-
serine externalisation (PS flip) (4). Additionally, caspase 8 triggers remodelling of the sub-mem-
branous cytoskeleton by degrading structural proteins such as α-fodrin (5).



81J. REPRODUKTIONSMED. ENDOKRINOL. 2/2008

and architecture of the phospholipid
bilayer. The studies reviewed herein
suggest that fusion of trophoblasts is
administrated by a panel of factors
and rather exclude a hypothesis of a
single fusing factor. Involved proteins
such as growth factors and cytokines,
protein kinases, transcription factors,
proteases and membrane associated
proteins imply activation of a spe-
cific fusogenic cascade in cytotro-
phoblasts destined for fusion (Fig. 3).

However, if one factor is dysregu-
lated or non functional, the conse-
quences on trophoblast fusion and
placental development might be
devastating. Downregulation of one
of the best investigated fusion fac-
tors, syncytin 1, was associated with
preeclampsia and intrauterine
growth restriction [80, 81]. This can
be explained by the fact that the tran-
scription factor GCMa, which regu-
lates syncytin 1 expression, was also
downregulated in preeclamptic pla-
centas [82]. Hence, regulation and
interaction of all involved factors
must be coordinated precisely.
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