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T he sympathetic nervous system (SNS) is an important
regulator of cardiovascular function. Its activity is deter-

mined by psychological, neuronal and humoral factors [1–3].
Activation of neurohumoral systems as well as impairment of
local regulatory mechanisms plays a significant role in the
pathogenesis and prognosis of cardiovascular diseases.

SNS activity increases with age independently of disease
state [4]. Furthermore, in congestive heart failure, SNS activ-
ity is markedly elevated and strongly correlates with mortality
[5]. Elevated sympathetic activity not only plays a role in the
induction of ischaemia due to reflex-tachycardia and coro-
nary vasoconstriction [6], but also correlates with hyperten-
sion, insulin-resistance and the coronary risk [7].

Although its role in advanced hypertension is controver-
sial, the SNS seems to contribute to the development of hy-
pertension in early stages of the disease [8–10]. Essential hy-
pertension is thought to be associated with an enhanced sym-
pathetic activity triggered at the level of the central nervous
system in a complex manner [4, 9, 11]. Therefore, in theory,
it is likely, that interference with neuronal centers and path-
ways involved in the regulation of sympathetic activation at
the level of the central nervous system may reduce blood
pressure and cardiovascular risk. Thus, antihypertensive
pharmacotherapy and its influence on the SNS is of great
importance and will be discussed in this paper.

Anatomy and Physiology of the SNS
The efferent fibers arise from neuronal structures of the me-
dulla oblongata called vasomotor-center (Fig. 1). The effec-
tor organs are innervated with two neurons, which are
switched in ganglia. From the cytosomes of the preganglionic

neurons in thoracic and lumbar medulla myelinated axons
lead to the postganglionic neurons in the truncus sym-
pathicus and the prevertebral ganglia. Acetylcholine is the
neurotransmitter from the pre- to the postsynaptic neuron
and binds nicotinic to receptors. Adrenergic receptors with
the transmitter noradrenaline mediate the transduction to the
effector organ (Fig. 1).

The catecholamines epinephrine, noradrenaline and
dopamine are released from the adrenal medulla, which is
phylogenetically a ganglion. In peripheral vessels sympathetic
activation leads to vasoconstriction mediated by �1-adreno-
ceptors on smooth muscle cells, whereas effects on the heart
are mediated by �-adrenoceptors (�1 > �2). Alpha2-adreno-

Figure 1. Scheme of the sympathetic nervous system (SNS).
N = nicotinergic; C = cholinergic; reproduced with permission
from [2].
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ceptors may be secondary in the sympathetic regulation of
the cardiovascular system, however, experimental and first
clinical data suggest, that �2-adrenoceptors on the vascular
endothelium modulate adrenergic vasoconstriction [12, 13].

The SNS interacts with the renin-angiotensin-system
(RAS) and the vascular endothelium (Fig. 2). Angiotensin II
influences the release and reuptake of noradrenaline through
presynaptic receptors [14] and stimulates the sympathetic
nervous system through a central mechanism [15, 16]. Fur-
thermore, stimulation of  �1-adrenoceptors of the juxtaglo-
merular apparatus leads to activation of the RAS via elevation
of renin [17]; this mechanism increases blood pressure as
well as sodium and water-retention.

Besides purines, histamin, dopamine and prostaglandines,
noradrenaline itself inhibits noradrenaline-release through
presynaptic receptors, whereas epinephrine and angiotensin II
stimulate noradrenaline-release presynaptically.

How can SNS Activity be Assessed?
We can assess SNS activity using different more direct or in-
direct methods (Fig. 3). We have to distinguish between di-
rect release and effector organ responses. The latter are blood
pressure, blood flow and heart rate; they are well known indi-
rect measures of SNS activity. As effector organs in part react

slowly to variations of the sympathetic activity and they de-
pend on local-chemical, mechanical and hormonal influ-
ences, too, the interpretation of these parameters is complex.
In clinical practice measuring plasma noradrenaline assesses
sympathetic activity. Plasma noradrenaline, however, is only
an indirect measure of sympathetic nerve activity as only the
overflow of the adrenergic neurotransmitter from the synap-
tic cleft is measured. Furthermore, plasma noradrenaline does
not only reflect the activity of adrenergic neurons, but also
that of the adrenal medulla (Fig. 3). Finally, most methodolo-
gies to measure plasma catecholamines are prone to consider-
able variation [18], so that the more specific measurement of
noradrenaline-spillover from the heart and other methods
like blood pressure and heart rate variability have been intro-
duced [19, 20].

Microneurography allows assessment of skin sympathetic
nerve activity (SSA) or muscle sympathetic nerve activity
(MSA) directly in a peripheral nerve [21, 22] (Fig. 3). The
signals can be obtained on-line and hence also small and short
lasting changes during stimulatory maneuvers as well as their
time course can be recorded [21–25]. This methodology di-
rectly assesses electrical outflow of the sympathetic nervous
system from the medulla oblongata. The latter property of
microneurography allows to characterize changes in sympa-
thetic nerve activity during application of cardiovascular
drugs and to analyze the importance of pharmacokinetic
properties of a given preparation under these conditions [26]
(see below).

Furthermore the measurement of systolic time intervals,
the impedance cardiography, the laser Doppler flowmetry
and the measurement of muscle blood flow can be applied to
assess the influence of the sympathetic nerve activity on ef-
fector organs [18, 27–30] (Fig. 3).

How do Cardiovascular Drugs
Affect SNS Activity?

Central sympatholytic agents
Central sympathicolytics are one of the oldest antihyperten-
sive drugs. Indeed, the “classical” central sympathicolytics, ie,
clonidine, guanfacine, guanabenz and alpha-methyl-DOPA
are well known centrally acting antihypertensive agents and
act on central �2-adrenoreceptors. This leads to sympatho-
inhibition and hence reduction in blood pressure, predomi-
nantly as a result of vasodilation and a consequent decrease in
peripheral vascular resistance. Although these drugs are ef-
fective antihypertensives, they are no longer used as first-line
drugs in the treatment of hypertension because of their un-
pleasant side effects like dizziness, dry mouth and sedation.
In case of clonidine there was also concern about rebound
hypertension [31]. These side effects are to a major extent
mediated by �2-adrenoceptors [32].

A new generation of centrally acting antihypertensive
drugs with less adverse effects (ie, moxonidine and ril-
menidine) has been introduced into clinical treatment. It has
been shown that they mainly act on central imidazoline1-
receptors and less so on central �2-adrenoceptors [32–34]. In
contrast, other centrally acting antihypertensives, ie, alpha-
methyl-DOPA, guanfacine or guanabenz, mainly act on cen-
tral �2-receptors [35]. In animals, moxonidine led to a de-
creased sympathetic tone to resistance vessels, the heart and
the kidney [32, 36]. We showed in a double-blind, placebo-
controlled study with direct measurement of sympathetic
outflow in humans using microneurography under in vivo
conditions for the first time, that the imidazoline1-receptor
agonist moxonidine reduces systolic and diastolic blood pres-

Figure 3. Methods to asses sympathetic activity. SNS = sympa-
thetic nervous system; MSA = muscle sympathetic activity; SSA =
skin sympathetic activity; reproduced with permission from [2].

Figure 2. Main mechanisms and interactions between the sympathetic
nervous system (SNS), the renin-angiotensin-system (RAS) and the
endothelin system (ETS) in regulating blood pressure homeostasis.
AT1 = angiotensin-receptor type 1; AT II = angiotensin II; Ach =
acetylcholine; ET = endothelin; ETA/ETB  = endothelin-receptor
type A/B; M = muscarinic receptor; �1/�2/�2 = alpha1/alpha2/
beta2-adrenoceptor; NO = nitric oxide; PGI2 = prostaglandine I2;
reproduced with permission from [2].
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sure in both healthy volunteers and untreated hypertensive
subjects through a reduction in central sympathetic outflow
[37]. Moxonidine decreased muscle sympathetic nerve activ-
ity (Fig. 4) and plasma noradrenaline levels in both healthy
volunteers and hypertensives, whereas epinephrine and renin
levels did not change [37]. Heart rate decreased after
moxonidine in healthy subjects; in hypertensives, heart rate
decreased only during the night hours [37] (Fig. 5).

The potential of moxonidine to control blood pressure is
similar to other antihypertensive agents such as �- and
�-blockers, calcium antagonists or ACE-inhibitors, although
we have to await the clinical trials assessing the responder
rates of moxonidine in comparison with other antihyper-
tensives; side effects such as dizziness and dry mouth were
less pronounced than with the older centrally acting anti-
hypertensives, eg clonidine [38, 39].

Rilmenidine is another imidazoline1-receptor agonist
with a high affinity for the imidazoline receptors [40]. Patient
trials confirmed effective blood pressure lowering and fewer
side effects than with clonidine [41–43]. Rilmenidine in
comparison with the �-adrenoceptor antagonist atenolol was
similarly well tolerated and both drugs caused similar de-
creases in systolic and diastolic blood pressure. However, in
contrast to atenolol, rilmenidine did not influence autonomic
function such as heart rate during exercise and the Valsalva
maneuver [44]. Studies directly assessing effects of rilmeni-
dine on SNS activity in humans are lacking.

Diuretics
Diuretics inhibit the salt- and water-reabsorption in the tu-
bulus and thus they lead to a reduction of preload and
afterload. The diuretic-induced loss of salt and water acti-
vates several hormonal systems such as vasopressin, the
renin-angiotensin-aldosterone system and the sympathetic
nervous system which tend to compensate for the changes in
sodium and water balance [45, 46].

The long-term haemodynamic adaptation to diuretic
treatment may be related to altered cardiovascular reflexes.
Changes in sympathetic nerve activity and reduced vascular
sensitivity to noradrenaline may contribute to the adaptation.
In clinical practice, the combination of a �-blocker and a diu-
retic is well established because the complimentary mecha-
nisms of antihypertensive effects with increased sympathetic
outflow and renin-angiotensin axis activation induced by the
diuretic can be blunted by �1-adrenergic blockade. Whether
the combination with a central sympathicolytic drug has
similar additive effects is not extensively studied; however, in
combination therapy, the diuretic hydrochlorothiazide with
moxonidine had the lowest responder rates, whereas the

combination with a calcium channel blocker (amlodipine)
resulted in much higher responder rates; possibly, the central
sympathicolytic moxonidine prevents the reflex SNS activa-
tion induced by amlodipine which otherwise would attenu-
ate the vasodilator capacity of the calcium antagonist [47].

Nitrates
Nitrates are peripheral vasodilators, which cause endothe-
lium-independent relaxation of vascular smooth muscle. Re-
flex tachycardia is a known unwanted reaction to the applica-
tion of several vasodilators. In a double-blind placebo-con-
trolled study isosorbide-dinitrate markedly increased both
heart rate and muscle sympathetic nerve activity (MSA) as as-
sessed by microneurography [26], confirming earlier studies
of intravenous administration of other vasodilatators [48–50].
This effect can be explained by an arterial baroreceptor-me-
diated mechanism, a decrease in pulse-pressure and an acti-
vation of low pressure receptors caused by a possible decrease
in central venous pressure [26].

ACE-inhibitors (ACEI)
By blocking the converting enzyme, ACEI inhibit the synthe-
sis of angiotensin II, a strong vasoconstrictor, which enhances
the release of noradrenaline through stimulation of periph-
eral presynaptic receptors [51]. Furthermore, angiotensin II
stimulates central SNS activity [52]. ACEI also seem to pre-
vent the breakdown of bradykinin inducing further vasodila-
tion via stimulation of nitric oxide and prostacyclin release.
Bradykinin leads to release of nitric oxide and prostacyclin
from the endothelium, which may contribute to the haemo-
dynamic reactions to ACE-inhibition. On the other hand
bradykinin may also be responsible for the adverse reactions
such as cough and angioneurotic oedema [53–57].

In contrast to pure vasodilators (ie, nitrates or calcium an-
tagonists), which activate the SNS, ACEI induce no reflex
tachycardia or increases in plasma noradrenaline [58]. In a
double-blind placebo-controlled study the ACEI captopril
after acute administration in healthy volunteers reduced
muscle sympathetic nerve activity (MSA) despite lowering
blood pressure without influencing the responsiveness to
mental or physical stress, whereas nitrates strongly activated
MSA [5, 26]. This indicates, that reduction of circulating an-
giotensin II, which stimulates SNS activity, lowers sympa-
thetic tone [52]. This might be one possible explanation for
the beneficial effects of ACEI on survival in patients with left
ventricular dysfunction, in which activation of sympathetic
nervous system is strongly associated with morbidity and
mortality [59]. These positive effects of the ACEI on mor-
bidity and mortality of patients with heart failure and im-

Figure 4. Effect of the central sympathicolytic moxonidine on
central SNS activity (muscle sympathetic nerve activity) as
assessed by microneurography. Modified from reference [127]

Figure 5. Effect of the central sympathicolytic moxonidine on heart
rate (Details see text). Modified from reference [127]
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paired left ventricular function and patients after myocardial
infarction have been documented in numerous clinical stud-
ies [59–63].

However, with chronic administration a number of
mechanisms exist which may partially co-interact the benefi-
cial effects of ACE inhibition after acute dosing. Especially
angiotensin II may be synthesized by alternate non-ACE-de-
pendent pathways (so called chymases), which may in part
oppose the acute depressing effects on SNS activity [64–66].
On the other hand it has been shown, that chronic ACE inhi-
bition did not change biosynthesis, storage or release of
catecholamines [67]. From the fact that bradykinin stimu-
lated noradrenaline release dose-dependently, almost during
converting enzyme inhibition, it has been concluded that
bradykinin may compensate for the lack of effect of convert-
ing enzyme inhibitors on catecholamine release [67]. At least,
in heart failure, chronic ACE inhibitor treatment is accompa-
nied by a marked reduction in central sympathetic outflow,
that may depend on a persistent restoration of baroreflex re-
straint on the sympathetic neural drive [68]. Furthermore
vagal activity seems not to be influenced, as acute and chronic
ACE inhibition did not blunt important cardiovascular re-
flexes [69].

AT1-receptor antagonists
The blockade of the angiotensin II receptor is the most direct
way to inhibit the renin-angiotensin system (RAS). In con-
trast to the ACEI, which do not affect noradrenaline release
because of the activation of compensatory mechanisms and
inhibition of noradrenaline-reuptake and noradrenaline-me-
tabolism, AT1-receptor antagonists in vitro suppress the angi-
otensin-induced noradrenaline release and thus its prolifera-
tive effects [70, 71].

The effects of AT1-receptor antagonists have not yet been
studied extensively in humans in vivo. The Evaluation of
Losartan in the Elderly (ELITE)-study showed that the ef-
fects of the AT1-antagonist losartan on mortality of patients
with symptomatic heart failure older than 65 were more pro-
nounced than with the ACEI captopril [72]. There was no
significant difference between plasma levels of noradrenaline
in the losartan compared with the captopril group.
Candesartan has shown similar effects on exercise capacity,
ventricular function and neurohormones than the ACE-in-
hibitor enalapril in heart failure patients [73].

Experimental data suggest, that AT1-receptor antagonists
lead to a more complete suppression of catecholamines than
ACEI [74]. The newer non-peptide AT1-receptor antagonist
eprosartan has been shown to inhibit the pressor response in-
duced by spinal cord stimulation in pithed rats, whereas equi-
valent doses of other nonpeptide AT1-receptor antagonists,
such as losartan, valsartan and irbesartan, had no effect on sym-
pathetic outflow; this has been interpreted as a more effective
inhibition of prejunctional angiotensin II-receptors [75].

Whether these effects on SNS activity play a role in vivo in
humans, is not known. However, first clinical data from a
double-blind, placebo-controlled study suggest, that at least
losartan does not reduce basal nor exercise-induced sympa-
thetic activity when compared to placebo or enalapril [76].
Other trials investigating hard clinical endpoints such as
mortality and morbidity, e.g. in heart failure patients, are on-
going (CHARM) [77].

Furthermore, combination of ACE-inhibitors and AT-
receptor antagonists seems to improve therapeutic effects and
end-organ damage compared to monotherapy, but large-scale
clinical trials are lacking [73, 78].

Beta-blockers
Beta-adrenoceptor antagonists inhibit ß1-adrenoceptor-me-
diated positive inotropism and chronotropism of catechola-
mines on the heart and the �2-adrenoceptor-mediated relaxa-
tion of the vascular smooth muscle [38, 79–81]. Further-
more, blockade of �-adrenoceptors antagonizes the metabolic
effects of catecholamines like lipolysis or glycogenolysis [80].

In the therapy of cardiovascular diseases selective blockade
of �1-adrenoceptors protects the heart from enhanced sym-
pathetic tone reducing heart rate and inotropism and thus
cardiac oxygen consumption.

�-adrenoceptor-antagonists are established in the therapy
of hypertension and ischaemic heart disease as they positively
influence mortality, ischaemic episodes, risk for myocardial
(re)-infarction and sudden death [82–85].

In the last few years, �-adrenoceptor antagonists have
been introduced in the therapy of congestive heart failure
[86–88]. The positive effects of �-blockade in congestive heart
failure have been shown for bisoprolol [89], metoprolol [90]
and carvedilol [91] and seem to result from a better efficiency
of the SNS under �-blockade. They improve haemodynam-
ics and symptoms and have recently been shown to reduce
mortality [92]. Thus, �-adrenoceptor antagonists inhibit the
downregulation of �-adrenoceptors and increase the sensitiv-
ity to �-adrenoceptor agonists [93]. Yet, the benefits of �-
blockers are seen in patients already receiving ACE inhibi-
tors, suggesting that combined blockade of two neurohormo-
nal systems (renin-angiotensin system and sympathetic nerv-
ous system) can produce additive effects. The effect of �-
blockade on central sympathetic nerve activity is controver-
sial and not extensively studied [94, 95]. Some studies show
decreases in SNS activity, whereas others did not find central
effects. Effects may, at least in part, depend on whether the
drug is lipophile or not. Although acute treatment with a �-
blocker may enhance central SNS activity, no study found
SNS activation after chronic �-blocker therapy [94, 95].

Calcium antagonists (CA)
CA lead to peripheral vasodilation and inhibit the effects of
vasoconstrictor hormones at the level of vascular smooth
muscle by reducing the calcium inflow through blockade of
slow voltage-dependent L-type calcium channels. The low-
ered intracellular calcium concentration inhibits electrome-
chanical coupling and hence leads to vasodilation and lower-
ing of blood pressure. Three groups of CA exist, dihydro-
pyridine-type (eg, nifedipine), phenylalkylamine-type (eg,
verapamil) and benzothiazepine-type (eg, diltiazem) which
bind to different sites of the �1-subunit of the calcium chan-
nel. While dihydropyridine calcium antagonists are mainly
peripheral vasodilators, verapamil-type calcium antagonists
have also direct effects on the SA-node and possibly reduce
SNS activity [96, 97].

CA are effective antihypertensive drugs and exert anti-
ischaemic effects [98]. Furthermore, they exhibit vascular
protective properties; they improve endothelial function in
atherosclerosis and hypertension, both experimentally [99]
and in human hypertension [100]. They inhibit proliferation
of human coronary artery smooth muscle cells [101] and
slightly reduce the development of new atherosclerotic le-
sions [102].

In spite of these vascular protective effects, clinical trials
with CA yielded disappointing results in patients with coro-
nary artery disease and impaired left ventricular function and
diabetes [103–110].

Activation of the SNS may not only depend on the class of
CA used, but also on its pharmacokinetics. Indeed, CA of the
dihydropyridine-type (ie, nifedipine, felodipine, amlodipine)
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lead to sympathetic activation with reflex-tachycardia [37,
111]. In contrast, verapamil leads to a reduction of heart rate
and sympathetic activity as assessed by plasma noradrenaline
[112]. After acute administration in healthy volunteers,
nifedipine markedly increased muscle sympathetic nerve
activity as assessed by microneurography; interestingly, this
occurred not only with short acting, but also with very slow
release formulation of nifedipine, ie, the GITS formulation.
In contrast, HR increased only with short acting, but not with
slow release nifedipine [37]. Therefore, nifedipine different-
ly activates cardiac and peripheral sympathetic tone depend-
ing on pharmacokinetics. Thus, heart rate not necessarily pre-
dicts SNS activity, so that a lack in heart rate increase is no
proof for missing SNS activation [37].

Amlodipine, a newer slow-acting dihydropyridine-type
CA seems to stimulate SNS to a lesser degree than other
dihydropyridines. Nevertheless heart rate and plasma nor-
adrenaline increased significantly in hypertensives after acute
application, but there was no long-term effect on heart rate
[111]. Furthermore, in renal hypertension, amlodipine acti-
vates central SNS activity during chronic therapy, whereas an
ACE-inhibitor reduces SNS activity [113].

Other vasodilators including peripheral alpha1-
blockers
The pure vasodilators minoxidil (potassium channel opener)
and hydralazin are effective antihypertensives, which lower
preload and afterload. However, they stimulate SNS activity
and with long-term treatment compensatory activation of the
sympathetic and the renin-angiotensin-systems predominate
[114].

Selective �1-adrenoceptor-antagonists like prazosin also
lower pre- and afterload through inhibition of peripheral
sympathetic vasoconstriction, but do not influence the sym-
pathetic activity to the heart which is predominantly �-adreno-
ceptor-mediated [115]. This might explain why the Veterans
Administration Cooperative Study with prazosin could not
show a better prognosis of patients with heart failure [116].
Interestingly, the �1-adreno-
ceptor-antagonist doxazosin in-
duces significant sympathetic
overactivation both at rest and
under physical exercise, when
compared to placebo [76, 79].

A recent study showed, that
in hypertensive patients with
renal artery stenosis the non-
specific vasodilator dihydrala-
zine in comparison to the
ACE-inhibitor enalapril lead to
a similar fall in blood pressure
but, in contrast to enalapril,
dihydralazin increased plasma
angiotensin II, muscle sympa-
thetic nerve activity, heart rate,
and total body noradrenaline
spillover [117].

Interactions of the SNS
with the Vascular

Endothelium
The vascular endothelium
with the underlying vascular
smooth muscle cells plays an
important role in the regula-
tion of vascular tone. Func-

tional changes in the secretion of endothelium-derived me-
diators may be involved in the pathogenesis and progression
of cardiovascular diseases, eg hypertension and atherosclero-
sis. Experimental data suggest various interactions between
SNS and the vascular endothelium (Fig. 2). Endothelin-1,
which is released from endothelial cells, is the strongest vaso-
constrictor, plasma levels of endothelin-1 are elevated in sev-
eral cardiovascular diseases [118]. Thus, endothelin leads to
peripheral vasoconstriction, an elevation of blood pressure
and plasma catecholamine levels in rats, intrathecally injec-
tion of endothelin stimulates sympathetic activity [119]. Fur-
thermore it is at least a comitogen of the proliferation of vas-
cular smooth muscle cells [118]. Different ET-receptors
have been cloned [118]. Whereas the major effect of vaso-
constriction is mediated through ETA-receptors on smooth
muscle cells, ETB-receptors on the vascular endothelium
may release vasodilating substances like NO and prostacyclin
[120, 121]. In human skin microcirculation the ETA-selec-
tive antagonist BQ-123 inhibits vasoconstriction to angi-
otensin II and noradrenaline in vivo in healthy subjects, indi-
cating the potential synergistic effect of a combination of
endothelin receptor antagonists with the established thera-
peutic regime inhibiting the sympathetic nervous system and
the renin-angiotensin system [122]. In clinical hypertension
the antihypertensive effects of the endothelin antagonist
bosentan were comparable with the ACE-inhibitor enalapril
and there may be beneficial effects in CHF, but further clini-
cal trials have to confirm these results [123–125].

Endothelin receptors on endothelial cells are linked to
voltage-operated calcium channels via G-proteins [126]. This
may explain why calcium antagonists reduce endothelin-in-
duced vasoconstriction in the human forearm circulation, ie,
intraarterial application of verapamil or nifedipine prevents
contractions to intraarterial infused endothelin [30]. On the
other hand, drugs, which stimulate SNS activity (eg nitrates,
nifedipine) increased endothelin plasma levels in vivo in humans,
whereas ACE-inhibitors and moxonidine decreased SNS
activity and did not increase plasma endothelin [26, 127].

Table 1. Summary of the effects of cardiovascular drugs on SNS activity in human cardiovascular
disease. Note the table gives only an overview on the effects; individual responses vary depending
on age, disease and differences within the drug classes. For details and references, see text. HR:
heart rate; Catechol: catecholamines; MSA: muscle sympathetic nerve activity as assessed by
microneurography. n.a.: no data/insufficient data available.

Drug HR HR Catechol. Catechol. MSA MSA
(acute) (chronic) (acute) (chronic) (acute) (chronic)

Central sympathicolytics � ������ � � � n.a.

ACE-inhibitors � � � � � �

Angiotensin receptor � � �� �� n.a. n.a.
antagonists

Beta-blockers � � � � � �

Diuretics � � � n.a. n.a. n.a.

Nitrates � �� � n.a. � n.a.

Peripheral alpha-blockers � � � n.a. n.a. n.a.

Dyhidropyridine-type
calcium-antagonists ������ ������ � ������ �� ������

(slow release formulation)

Verapamil-type
calcium-antagonists � � � � n.a. ��

(slow release formulation)

Endothelin-antagonists � �� �� �� n.a. n.a.

� Differences within the drug classes exist and/or study results are controversial. # Only few data
available by now. � = reduction; � = increase; � = unchanged
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Chronic therapy with calcium antagonists in experimental
and human hypertension improved endothelium-dependent
relaxation to acetylcholine [128]. ACE-inhibitors stimulate
endothelium-dependent relaxation indirectly through pre-
vention of bradykinin breakdown, which leads to formation
of NO and prostacyclin. In experimental approaches in the
resistance circulation of spontaneously hypertensive rats,
chronic blockade of the renin-angiotensin system with a
nonpeptidic angiotensin II-receptor antagonist CGP 48369,
the ACE-inhibitor benazepril HCl, or the calcium antagonist
nifedipine reduced blood pressure and improved endothelial
dysfunction [99]. Clinical studies showed that the ACE-in-
hibitor quinapril could reverse endothelial dysfunction and
reduce the frequency of coronary ischaemia [129–131]. Ad-
ministration of the ACEI lisinopril to patients with essential
hypertension has been shown to selectively increase vasodila-
tation in response to infusion of bradykinin [132].

Intrinsic differences exist between different ACEI, ie,
quinaprilat and enalaprilat, which determine the ability to
improve endothelium-mediated vasodilation, ie, their differ-
ent affinity to tissue ACE, because quinaprilat could improve
flow-dependent dilation in patients with chronic congestive
heart failure as the result of increased availability of nitric ox-
ide, whereas enalaprilat could not [133].

Experimental and first clinical trials in the human skin
microcirculation suggest, that adrenoceptor agonists can
stimulate endothelial �-adrenoceptors leading to the release
of nitric oxide (NO) and other vasodilating substances [134,
135]. Indeed, �1-adrenoceptor-mediated constriction of vas-
cular smooth muscle cells could be potentiated by NO-inhi-
bition both in vitro and in vivo in humans [134, 135]. This
mechanism may be of pathophysiological importance in
atherosclerosis and hypertension where endothelial function
is impaired.

Conclusion
There are important effects of cardiovascular drugs on the
sympathetic nervous system in humans, which are summa-
rized in Table 1. It must be emphasized, that in several aspects
the study results vary depending on the subtype of a drug and
the underlying disease under investigation. Table 1, there-
fore, offers only a coarse overview of the potential effects of
the drugs on SNS activity. Most studies, especially the
chronic studies, have only assessed SNS activity indirectly, ie,
measuring plasma catecholamines or heart rate variability.
Data using microneurography, which directly records central
sympathetic nerve traffic, are only incomplete. Nevertheless,
the trends observed in the trials in most cases are consistent.

The complex effects of antihypertensive drugs on the
pressor systems (SNS, RAS and ETS) seem to be relevant for
clinical use, especially for the therapy of patients with cardio-
vascular diseases. A potential mediator of untoward effects of
cardiovascular drugs is an activation of the SNS. Indeed, the
fact that an increased SNS activity, ie, high heart rates and
high plasma noradrenaline levels, is associated with an in-
creased mortality in patients with cardiovascular disease and
especially with congestive heart failure [5, 136, 137] suggests,
that an activation of the SNS is detrimental at least in these
patients, but possibly also in other patient groups, e.g.
hypertensives [138]. Overactivation of the SNS may also be
detrimental in patients with diabetes and coronary artery dis-
ease including acute coronary syndromes [139].

The more recently discovered interactions between the
pressor systems will importantly impact the guidelines of
therapy; the upcoming trials assessing combination therapy
in hypertension will help to find out whether these interac-

tions can be prevented with drugs that have synergistic effects
and less or no reflex activation of other pressor systems. Im-
portantly, the upcoming endothelin antagonists may broaden
the cardiovascular therapeutic arsenal by a drug, which is not
only a potent vasodilator, but also inhibits the effects of the
SNS and the RAS at various levels.

Whether the beneficial effects of some antihypertensive
drugs on the SNS translate into a reduction of hard
endpoints, i.e. cardiovascular and total mortality, has yet to be
demonstrated in clinical trials.
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