Reproductive Phenotypes of Mouse Models Illuminate Human Infertility

Adelfalk C, Ahmed EA, Scherthan H

J. Reproduktionsmed. Endokrinol 2011; 8 (6), 376-383
Mitteilungen aus der Redaktion

Besuchen Sie unsere Rubrik

✔ Medizintechnik-Produkte

Neues CRT-D Implantat
Intica 7 HFT QP von Biotronik

Aspirator 3
Labotect GmbH

Artis pheno
Siemens Healthcare Diagnostics GmbH

Philips Azurion:
Innovative Bildgebungslösung

InControl 1050
Labotect GmbH

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

✔ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum
Disclaimers & Copyright
Datenschutzerklärung
Reproductive Phenotypes of Mouse Models Illuminate Human Infertility

C. Adelfalk, E. A. Ahmed, H. Scherthan

Infertility represents a significant health problem in industrialized nations because reproductive activity is increasingly delayed and couples face a risk of impaired fetal health at advanced maternal age (>35 years). Furthermore, approx. fifteen percent of couples have difficulties to conceive within a year of unprotected intercourse. Reduced reproductive success often relates to a defective meiotic process that would normally lead to formation of ova and sperm. The understanding of the mechanisms of meiosis and fertility has largely benefited from knockout and transgenic mouse models that display a fertility phenotype. Using information from meiosis-deficient mice has impacted on the diagnosis of infertility of unknown origin of human patients. In this paper we discuss insights gained in the etiology of infertility by looking at murine genetic models with a reproductive phenotype due to disruptions in genes acting during meiotic prophase. We focus on genes that are important for recombinational DNA repair, meiotic chromosome structure and reproductive aging and will compare these phenotypes to human conditions with reproductive impairment. J Reproduktionsmed Endokrinol 2011; 8 (6): 376–83.

Key words: genetics, infertility, meiosis, mouse models, recombination, human syndromes

Introduction

Infertility is increasingly recognized as a major health problem. Despite millions of individuals taking contraceptive measures approximately 15% of couples who wish to reproduce face difficulties to conceive within one year of unprotected intercourse [1]. Reproductive success depends on the faithful function of both female and male reproductive systems which may fail upon environmental exposures, anatomic defects, endocrinopathies, immunological problems or gametogenesis arrest. Defects in hormonal control and sexual differentiation pathways as well as in spermiogenic differentiation are well-known factors that underlie infertility in mammals of both sexes (for review see [2, 3]).

There are genetic syndromes such as e. g. Kallmann syndrome, cystic fibrosis or Turner’s syndrome that are associated with infertility. But the basic mechanisms of about a quarter of all clinical infertility cases remain poorly understood, with many of the unrecognized pathologies being of genetic nature. Clinically, karyotype and mutation analysis for a few genes, for instance the cystic fibrosis transmembrane conductance regulator gene [4] and Y chromosome deletion analysis [5] are among the most common genetic tests offered to individuals seeking advice in infertility clinics.

Insights into the aetiology of infertility are obtained by an ever speeding rate of the generation of genetically modified animal models. Up to now, about 500 genetic mouse models with a reproductive phenotype have been generated. The knowledge accumulated through such model studies increasingly sheds light on idiopathic infertility met in the clinic (for review see [3, 6, 7]).

The subfertility of couples with advanced age has recently attracted interest [8, 9] and new molecular knowledge on the underlying defects has been obtained through generation of mammalian genetic models that underpin the importance of proper function of meiotic chromosome biology and checkpoint control. Here, we will focus on insights in the genetics of infertility gained through targeted disruption of murine genes involved in meiotic chromosome structure and homologous recombination (Tab. 1) during prophase I to the first meiotic division.

Mammalian Gametogenesis

In the mouse and other animals meiosis occurs in specialized organs (gonads) that form during fetal development and differentiate under hormonal control into ovaries and testes and eventually produce ova or sperm. In the female, meiosis commences and proceeds during early fetal development, but grinds to a halt prior to the first meiotic division. This arrest, depending on the species, lasts from months to even years [65]. In the male, meiosis starts at the onset of puberty in a first, rather synchronous wave and subsequently proceeds throughout life [66, 67]. Gametogenesis is under the control of complex regulatory circuits involving a variety of developmental pathways such as hormone signalling, chromatin and cell cycle control and differential DNA repair pathways. Up to date there are more than 500 knockout or transgenic mouse mutants known to affect gametogenesis (reviewed by [3, 68–70] (http://jaxmice.jax.org/models/reproductive_biology.html; seen October 25, 2011).

Gene defects that interfere with reproductive success are known from different fields involving diverse aspects of cellular functions [3]. The production of germ cells starts with the division of a stem cell giving rise to a committed stem cell (spermatogonia/oogonia), the mitotic progeny of which enters the prophase to the first of two meiotic divisions that ultimately give rise to haploid sperm or eggs. In preparation for the first meiotic division (meiosis I) maternal and paternal (homologous) chromosomes have to pair and recombine. Subsequently, regulated exchanges between homologous chromosomes together with specialized cohesion between sister chromatids and
<table>
<thead>
<tr>
<th>Mutated gene (mouse)</th>
<th>Major function in meiosis</th>
<th>Mouse Fertility</th>
<th>Type of meiotic arrest/ apoptosis stage</th>
<th>Fertility phenotype in the human</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Ataxia telangiectasia mutated (Atm)</td>
<td>recombination, chromosome dynamics</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema</td>
</tr>
<tr>
<td>Bloom’s syndrome (Blm)</td>
<td>repair</td>
<td>infertile</td>
<td>fertile</td>
<td>pachynema</td>
</tr>
<tr>
<td>DMC1 dosage suppressor of mei I homolog (Dmc1T)</td>
<td>recombination</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema</td>
</tr>
<tr>
<td>Fanconi anemia complementation group A (Fanca)</td>
<td>recombination</td>
<td>subfertile</td>
<td>subfertile</td>
<td>reduced numbers of primordial germ cells</td>
</tr>
<tr>
<td>Fanconi anemia complementation group C (Fancc)</td>
<td>meiotic germ cell proliferation</td>
<td>subfertile</td>
<td>subfertile</td>
<td>reduced proliferation of primordial germ cells</td>
</tr>
<tr>
<td>Fanconi anemia complementation group D1/ Breast cancer 2 (Fancd1[Brca2)</td>
<td>recombination</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema</td>
</tr>
<tr>
<td>Fanconi anemia complementation group D2 (Fancd2)</td>
<td>recombination (?)</td>
<td>subfertile</td>
<td>subfertile</td>
<td>reduced number of spermato- gonias, apoptosis in pachynema</td>
</tr>
<tr>
<td>Histone H2A family, member X (H2aX)</td>
<td>repair, XY inactivation</td>
<td>infertile</td>
<td>hypofertile</td>
<td>pachynema</td>
</tr>
<tr>
<td>Lamin A (Lama)</td>
<td>nuclear envelope</td>
<td>infertile</td>
<td>fertile</td>
<td>pachynema</td>
</tr>
<tr>
<td>Meiotic recombination homolog A (Mre1A)</td>
<td>recombination</td>
<td>subfertile</td>
<td>subfertile</td>
<td>zygonema delay</td>
</tr>
<tr>
<td>MutL homolog 1 (Mlh1)</td>
<td>recombination</td>
<td>infertile</td>
<td>infertile</td>
<td>metaphase I</td>
</tr>
<tr>
<td>MutL homolog 3 (Mlh3)</td>
<td>recombination</td>
<td>infertile</td>
<td>metaphase I</td>
<td>metaphase I</td>
</tr>
<tr>
<td>Nibrin (Nbs1)</td>
<td>recombination</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema</td>
</tr>
<tr>
<td>Poly (ADP-ribose) polymerase family, member 2 (Parp2)</td>
<td>XY inactivation</td>
<td>hypofertile</td>
<td>fertile</td>
<td>increased apoptosis at pachynema, metaphase I and of spermatids</td>
</tr>
<tr>
<td>Rec8 homolog C (Rec8C)</td>
<td>cohesion</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema</td>
</tr>
<tr>
<td>Structural maintenance of chromosomes 19 (Smc19)</td>
<td>cohesion, synopsis</td>
<td>infertile</td>
<td>infertile</td>
<td>pachynema</td>
</tr>
<tr>
<td>SPO11 homolog (Spo11)</td>
<td>recombination</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema</td>
</tr>
<tr>
<td>Sae1 and UNC84 domain containing 1 (Sauc1)</td>
<td>telomere attachment</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema/ pachynema</td>
</tr>
<tr>
<td>Sycp1</td>
<td>synapsis</td>
<td>infertile</td>
<td>infertile</td>
<td>zygonema/ pachynema</td>
</tr>
<tr>
<td>Sycp2</td>
<td>synapsis</td>
<td>infertile</td>
<td>infertile</td>
<td>pachynema</td>
</tr>
<tr>
<td>Sycp3</td>
<td>synapsis</td>
<td>infertile</td>
<td>infertile</td>
<td>pachynema</td>
</tr>
<tr>
<td>T testis expressed gene 12 (Tix12)</td>
<td>synapsis</td>
<td>infertile</td>
<td>infertile</td>
<td>pachynema</td>
</tr>
</tbody>
</table>

a: conditional knockout mouse; b: transgene knockout mouse; c: hypomorph; nd: no data/not known
Chromosome Dynamics During Mammalian Meiosis

An error-free meiotic process is essential to produce functional germ cells. In the male mammal, meiosis starts with the entry into the prophase to the first meiotic division (prophase I), after B spermatogonia have completed a prolonged premeiotic S-phase. Prophase I commences with preleptotene when chromosomes start to condense and to assemble a meiosis-specific cohesin complex along tightly connected sister chromatids. Chromosome ends (telomeres) now migrate and attach to the nuclear envelope during leptotene. During the leptotene substage, thin axial cores (a.k.a. axial elements) develop along elongating chromosomes [73, 74]. Chromosomes move with their telomeres to pair during zygonema when the formation of the synaptonemal complex (SC), a proteinaceous zipper-like ribbon that connects the chromosomal axial elements, is initiated (for review see: [75, 76]). During this time there is a fleeting clustering of telomeres near the centromere (bouquet stage), which likely contributes to homologue pairing [77]. Telomere clustering dissolves with growing synaptic pairing between homologous chromosomes that are fully synapsed at pachytene stage (Fig. 1A, C). At diplochromosomes that are fully synapsed at pachytene and diplotene spermatocytes (then called dyads) and sister centromeres allow for homologue segregation in the first meiotic division and sister chromatid segregation in the second meiotic division (for review see [71, 72]).

Meiotic Recombination and Repair are Essential for Fertility

Recombination between maternal and paternal chromosomes is essential for a successful meiotic process to occur in the germ cells. It is not only important to generate new genetic combinations, but is also necessary to pair and connect the homologous chromosomes after SC breakdown and up to metaphase I to avoid their missegregation. Chiasmata (sites of reciprocal recombination) provide the connections between homologues until their segregation at the metaphase I/anaphase transition. The number and position of recombination events is tightly regulated such that the requirement for at least one crossover/homologue pair is fulfilled and each chromosome pair receives at least one chiasma. In mammals, chiasmata are usually found within chromosome arm(s) [83–85].

Recombination is initiated in leptotena by DNA double strand breaks (DSBs) that are introduced by the meiosis-specific transesterase SPO11 [52, 53, 86, 87]. Meiotic DSBs are repaired through the homologous recombination pathway and proteins associated with DNA damage signaling and DNA repair form cytologically visible foci at the DSB sites, which is e.g. the case for the ubiquitous recombinase RAD51 and its meiosis-specific paralog DMC1 and the DSB marker phospho-histone H2AX [52, 53, 86–88]. Mice deficient of SPO11 or DMC1 are sterile and display synopsis failure. Spermatocytes in these animals arrest in a zygote-like stage, while oocytes undergo apoptosis at pachynema in Dmc1−/− females and at diacyte in Spo11−/− females [19, 20, 52, 53].

Recently, the human SPO11 gene has been linked to azoospermia with two azoospermic patients displaying heterozygous missense mutations in exon 1 and exon 9, respectively [54]. A Chinese study disclosed a heterozygous mutation in exon 7 of SPO11 in 8 males with idiopathic infertility [55]. Thus, heterozygous mutations in SPO11 have dominant effects and can lead to infertility in humans. For DMC1 a homozygous mutation was identified that occurred in individuals with premature ovarian failure [21].

Bloom’s syndrome (BS) involves defective DNA repair and is caused by mutations in the BLM gene, coding for a RecQ helicase. During meiotic recombination DNA repair BLM and the single strand binding protein RPA become abundant when RAD51/DMC1 foci start to decline as prophase I progresses [88]. Male patients are sterile and females have reduced fertility, while all patients are immunodeficient, sensitive to UV radiation and cancer predisposed. A conditional mutant mouse model of BLM displays meiotic chromosome pairing defects, an increased recombination rate and apoptosis of spermatocytes at metaphase I [15].

In response to DSBs the histone H2 variant H2AX is phosphorylated by ATM and other DSB responsive kinases (DNA-PKcs, ATR) at its C-terminus (then called γ-H2AX; [91]). Mice mutant for Atm display infertility, synopsis defects (Fig. 1B) and altered telomere behaviour in prophase I [10, 78, 92]. In pachytene and diplotene spermatocytes γ-H2AX marks the sex body containing the X and Y chromosomes that only synapse at the small pseudoautosomal region [93], while γ-H2AX contributes to the inactivation of the sex chromosomes.
during male prophase I [32]. H2ax-deficient mouse spermatocytes display normal deposition of early markers for recombining DNA repair (RAD51/DMC1) and homologues undergo synaptonemal paling, but there is prolonged meiotic teleomere clustering (bouquet formation) and H2ax+/− spermatocytes arrest in pachytene stage, leading to male infertility [33, 94].

Meiotic sex chromosome inactivation in males is also compromised in mice deficient for the tumor suppressor BRCA1 [16] and fails in knockout mice for the fast DNA repair enzyme PARP2. Parp2−/− mice also display MI missegregation and defective spermatid chromatin remodelling [47]. Like for the H2ax+/− mice only male meiosis is affected in mutants of Brca1 and Parp2. However, while H2ax−/− and Brca1−/− mutant spermatocytes arrest in pachynema [32, 33], Parp2−/− mice are subfertile due to increased apoptosis at pachytene and MI stages and defective spermatid elongation [47, 95].

The BRCA1 tumour suppressor gene product is involved in DSB processing in meiosis. BRCA1 expression declines in aged mouse oocytes and RNAi-mediated reduction of this protein in oocytes from young animals results in perturbed spindle formation and chromosome congression failure, leading to aneuploidy [96, 97]. Thus, a decrease of BRCA1 expression with age may be a factor contributing to an increase of aneuploidy with advanced maternal age. In the human, BRCA1 seems to be of importance for fertility, since BRCA1 mutations in women have been observed to be associated with primary ovarian insufficiency [17]. However, more data are needed before this observation can be settled.

Fanconi anemia (FA) is an inherited disease due to compound heterozygosity characterized by reduced fertility or sterility, congenital anomalies, growth retardation, aplastic anemia and an increased risk of leukemia and squamous cell carcinomas. FA patients carry mutations in FANC genes whose proteins are part of the FA DNA repair pathway. Defects in the FA pathway leads to genomic instability and compromised repair of DNA crosslinks and replication error-induced DSBs. To date, five mouse models of FANC proteins have been created (FancA, FancC, FancD1(Brca2), FancD2 and FancG knockout mice) and in all there are fertility defects like hypogonadism, impaired gametogenesis and reduced fertility or sterility (Tab. 1), thus mirroring the human situation (for review see [98]). FancA−/− and FancD2−/− mouse spermatocytes display an increased frequency of mispaired meiotic chromosomes suggesting a role for the FANC proteins in DNA repair during meiotic recombination [22, 29]. FancD1−/− (Brca2−/−) spermatocytes arrest at zygonema with abnormal recombination, as there are fewer RAD51 and DMC1 foci than in the wild type [27]. In the human the polymorphism p.N372H in BRCA2 may be associated with azoospermia or severe oligozoospermia, as the H allele frequency is significantly increased in men with such diagnoses [28].

Mismatch repair (MMR) contributes to maintenance of genomic integrity and for correcting DNA replication errors in somatic cells while it participates in crossing over in meiosis. A meiosis-specific mismatch protein, MSH4, heterodimerises with MSH5 [45, 99] and appears at recombination sites in zygonema [100]. At mid-pachynema MSH4 interacts with MLH1 and MLH3 [101]. The MLH1 and MLH3 proteins are associated with late recombination nodules that are known to correlate with crossover sites [88, 101]. Both genders of Mlh1−/− and Mlh3−/− mice are sterile [38, 41]. Males of both genotypes arrest in the first metaphase. Mlh1−/− oocytes fail to complete the second cell division [38], whereas a small proportion of abnormal Mlh3−/− oocytes extrude both the first and second polar body [41].

Mice deficient of MSH4 and MSH5, respectively, have also been engineered and are sterile in both sexes due to pairing defects and arrest in zygonema [44, 45]. A recent search for MSH4 mutations in patients displaying maturation arrest of spermatogenesis, however, failed to reveal mutations [7], but decreased relative MMR gene transcript levels (MLH1, MLH3, MSH4, MSH5) were noted in men with spermatogenic failure [102]. A combination of a missense mutation and an intronic variant in the MLH3 gene was detected in male patients with primary meiotic arrest and has been suggested to predispose to spermatogenic arrest [42]. Interestingly, men with this missense mutation (C2531T) in MLH3 or the polymorphism C85T in the MSH5 gene have an elevated risk of infertility and both polymorphisms may act synergistically [43]. Finally, a heterozygous missense mutation in the MSH5 gene was detected in two women with premature ovarian failure [21]. Altogether, these data underline the importance of MMR for human fertility.

While there are many more gene products known to contribute to DSB processing and recombinational repair, it is clear that perturbations in this complex process have dire consequences for fertility, as represented by reproductive failure in most knockout animals for recombination proteins (Table 1; also see Refs [3, 68, 103]).

Meiotic Chromosome Structure and Fertility

Another central process for execution of the meiotic process is the establishment of a meiosis-specific chromosome structure and the maintenance of cohesion that tightly holds sister chromatids and homologous chromosomes together during prophase I. This is accomplished by cohesin and SC proteins. At the onset of meiosis there is assembly of proteinaceous axial elements along sister chromatids, which include cohesin complex molecules that hold sister chromatids together, and meiosis-specific proteins like e.g. SYCP3 and SYCP2. Axial elements are then connected by synaptonemal complex proteins like SYCP1 and the like (see below). SC formation solidifies homolog pairing, facilitates meiotic recombination and crossover formation giving rise to chias mata that allow for homologue segregation at metaphase I [72, 104].

The cohesin complex consists of ubiquitous components, i.e. 2 SMC subunits, SMC1α and SMC3. In gametogenesis the meiosis-specific SMC1β cohesin appears and also forms a heterodimer with SMC3, while SMC1α expression is diminished. The heterodimer has a V-like structure that is closed to a ring by a kleisin, SSCI/RAD21 or the meiosis-specific REC8. Further components of the cohesin complex are SA1, SA2 or the meiosis-specific STAG3 that bind to the kleisin subunit of the complex [105]. Besides REC8- and SSCI/RAD21-con-
SMC1β and REC8 cohesin-deficient mice have been generated and are sterile in both sexes [48, 49, 51]. REC8-deficient mice display apoptotic germ cells at a zygotene-like stage. Other cohesin subunits bind to the chromosomes that are shorter in length compared to wild-type, but homologous chromosomes do not synapse. Early recombination foci do form, but late nodules are absent [48, 49]. The phenotype of the SMC1β-deficient mice, similarly involves hyper-condensed prophase I chromosomes (Fig. 1D) and often synopsis defects. Spermatocytes arrest at mid-pachynema, whereas oocytes can reach metaphase II [51]. While SMC1β−/− spermatocytes initiate but never complete recombination, oocytes display less chiasmata at MI [51]. In aging SMC1β−/− oocyte chiasmata distribution is skewed towards the distal chromosome end leading to increasing numbers of univalents and single sister chromatids in older metaphase oocytes [111]. Cohesin loss can lead to premature chromosome and sister chromatid segregation and thus aneuploid oocytes. If this scenario extends to humans as well, this might be one explanation for the higher frequency of aneuploidy in pregnancies and newborns of mothers with advanced age. So far, only mRNA measurements of cohesin have been performed in human oocytes of different age, but failed to reveal a correlation [116]. Since experiments in mice showed that the mRNA levels in young and old oocytes remained the same but the chromosome-associated protein diminished [117], it seems that it is chromosome-bound cohesin that is important for oocyte health.

The Importance of the Synaptonemal Complex to Fertility

Cohesin cores run along meiotic chromosomes (see above) and lay the basis for generation of a protein zipper, the synaptonemal complex (SC; Fig. 1) that connects two homologous chromosomes by transverse filaments (TFs) which reach between the lateral elements (LEs) along each homologue. Between the LEs a central element (CE) can be discerned. The SC protein SYCP1 is a TF protein whose N-terminal end is connected in the central element by SYCE1, SYCE2 and TEX12 [57, 118, 119], while the C-terminal end of SYCP1 binds to each of the opposing LEs that contain the LE proteins SYCP2 and SYCP3 [59]. Mice mutant for CE or LE proteins are sterile in the male sex owing to synapsis failure.
and spermatocyte death during a zygotene-like stage [59, 120–125], while SYCP2 and SYCP3-deficient females are subfertile with ~50% reduced litter sizes [59, 60]. For the Sycep3+/- mutant it has been shown that there is a maternal age-dependent intrauterine embryo death, which possibly relates to reduced chiasma numbers and presence of univalents in MI oocytes that can lead to aneuploidy in oocytes and consequently zygotes after fertilization [60].

Several studies revealed SYCP3 mutations in infertile men. A heterozygous mutation in SYCP3 has been found to be associated with a lack of postmeiotic cells and azoospermia [7, 61]. In women mutations in SYCP3 have been associated with recurrent pregnancy loss because of aneuploidy [62]. This condition mirrors the findings in the Sycep3-/- mice described above. Furthermore, a homozygous mutation that does not cause an amino acid substitution has been found in two infertile patients, and this SNP frequency is significantly higher in infertile women than in control patients [63]. Thus, this variant may be associated with an increased risk for infertility. Further investigations of more meiotic genes have the potential to disclose a deeper insight into the role of meiotic proteins in human infertility.

The Importance of the Nuclear Envelope in Meiotic Differentiation

Finally, the process of meiotic chromosome pairing and telomere mobility requires an intact nuclear envelope [126]. Spermatocytes that lack the meiosis-specific Lamin C2 at the inner nuclear membrane (Lmn a-/- mice) [127] display a failure of meiotic sex chromosome pairing and a dramatic increase in apoptosis during the late pachytene stage leading to a breakdown of spermatogenesis [35]. However, female Lmna-/- gametogenesis and fertility remain unaffected. During early prophase I telomeres attach to the nuclear envelope [77] through an interaction with the transmembrane protein SUN1. When this process fails, as in Sun1-/- mice, infertility ensues in both sexes due to pairing failure and defective recombination [56] underlying the importance of a normal nuclear envelope and telomere behaviour for the meiotic process.

Conclusions

Infertility in man is largely of unknown origin. Hence, knowledge about meiotic mouse models can guide the search for genes that play a role for idiopathic infertility in the human situation. In relation to the long list of mouse mutants displaying spermatogenetic and oogenic failure (Tab. 1) [3], so far only a few infertility cases and syndromes have been noted where the underlying genetic defect could be disclosed. Using the compiled knowledge in model organisms has the potential to extend diagnostics for human patients and hence may provide new insights in the aetiology of infertility.

Acknowledgements

We acknowledge partial support from H.H. Ropers, MPI of Molecular Genetics Berlin (CA, HS); the DFG (HS, SHEC350/10-1, SPP1384). E. A. Ahmed is a fellow of the Alexander-von-Humboldt Foundation.

Conflict of Interest

The authors declare no conflict of interest.

References:

Die meistgelesenen Artikel