Dietary Magnesium: Supply, Requirements and Recommendations - Results From Duplicate and Balance Studies in Man

Vormann J, Anke M

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Dietary Magnesium: Supply, Requirements and Recommendations – Results From Duplicate and Balance Studies in Man

J. Vormann¹, M. Anke²

The average magnesium uptake recommendation for an adult is in the range of 300 to 400 mg/day. During recent years dietary reference intakes in the USA and also in Germany/Austria/Switzerland have been slightly increased from the respective nutrition societies up to 400 mg/day for young men. The basis for these recommendations, among others, are balance studies. During the last years a series of balance and duplicate studies have been performed to determine magnesium uptake and balance in German and Mexican adults, in vegetarians, and in lactating women. In addition, the effect of supplementing a normal diet with 100 mg magnesium from a multimineral/multivitamin preparation was tested in a double blind, placebo controlled study in young women and in women during lactation. Daily magnesium intake from a self-selected diet in Germany was determined in duplicate studies in 1988/1992/1996 to be about 200 mg for women and 250 mg for men. Compared to these data a self-selected Mexican diet provided an average of 301 mg magnesium/day to women and 318 mg to men. Female and male vegetarians consumed 376 respective 474 mg magnesium/day. Balance studies that were performed over a period of 7 days showed no significant net uptake or net loss of magnesium. Supplementing the daily diet with 100 mg magnesium also did not lead to a changed balance. The higher intake was reflected by an increased urinary magnesium excretion, showing that about 20 to 40 % of the additional magnesium had been absorbed. Serum magnesium concentrations were not changed in young lactating and non-lactating women.

In addition to these balance studies in various test populations it could be shown that during aging a significant amount of magnesium (up to 50 %) is lost from the bones which represents the main storage compartment for magnesium. J Clin Basic Cardiol 2002; 5: 49–53.

Key words: magnesium, diet, balance, supplement, human

Magnesium is an essential mineral that is needed in sufficient amounts for numerous physiological processes. Under steady state conditions, magnesium uptake should be high enough to compensate for daily losses, occurring mainly via the urine. Increasing or decreasing magnesium renal excretion primarily regulates the extracellular magnesium concentration, the mechanisms underlying these regulatory processes have been reviewed in detail [1]. Increased extracellular magnesium concentrations could occur after redistribution of magnesium from intracellular to extracellular space. Intracellular magnesium losses are caused by activation of magnesium efflux systems when intracellular free magnesium concentrations are increased. This is the case after excessive breakdown of Mg-ATP as ADP binds magnesium with lower affinity than ATP [2]. When the increased extracellular magnesium concentration is decreased by renal excretion, part of the intracellular magnesium is lost from the body. When the intracellular ATP content is regenerated magnesium is taken up into the cells again, resulting in decreased extracellular magnesium concentration that has to be replenished by magnesium absorption from the intestines.

Diets low in magnesium can induce magnesium deficiency in animals and humans [3]. In growing rats very low plasma magnesium concentrations occur within a few days after feeding a magnesium deficient diet. In adult humans however, low plasma magnesium concentrations are observed only after prolonged ingestion of food with a low magnesium content [3]. During recent years dietary reference intakes for magnesium have been revised by the US Institute of Medicine [4] and also by the German, Austrian and Swiss nutrition societies [5] (Table 1). For adults the recommended intakes of magnesium are between 300 and 420 mg per day. These recommendations are based on a few balance studies with women and men consuming different diets, with different magnesium contents, and for some age groups no data from balance studies are available [4]. The recommendations are thus based on relatively few small studies, without taking into account either regional differences or differences due to race.

The actual intake of magnesium in various populations has been determined in various duplicate, shopping basket and balance studies with or without using supplemental magnesium. This article reviews the results of several magnesium balance and duplicate studies [6–10].

Table 1. Recommended dietary allowances (USA, 1997) and reference intakes (Germany, Austria, Switzerland, 2000) for magnesium (mg/day)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>1–3</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>4–8</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>9–13</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>14–18</td>
<td>360</td>
<td>410</td>
</tr>
<tr>
<td>19–30</td>
<td>310</td>
<td>400</td>
</tr>
<tr>
<td>31–50</td>
<td>320</td>
<td>420</td>
</tr>
<tr>
<td>51–70</td>
<td>320</td>
<td>420</td>
</tr>
<tr>
<td>>70</td>
<td>320</td>
<td>420</td>
</tr>
<tr>
<td>Pregnancy +40</td>
<td>Pregnancy</td>
<td>310</td>
</tr>
<tr>
<td>Lactation +0</td>
<td>Lactation</td>
<td>390</td>
</tr>
</tbody>
</table>

Received August 1st, 2001; accepted January 10th, 2002.

From the ¹IPEV-Institute for Prevention and Nutrition, Ismaning, and the ²Institute for Nutritional Sciences, Friedrich-Schiller-University Jena, Germany.

Correspondence to: Prof. Dr. rer. nat. Jürgen Vormann, IPEV-Institut für Prävention und Ernährung, Osterfeldstrasse 92, D-85737 Ismaning, Deutschland; e-mail: vormann@ipev.de
Methods

Studies were carried out in 17 test groups from Germany and Mexico which consisted of at least 7 women and 7 men between the ages of 20 and 69 years. If possible, 10 women and 10 men participated per study with 2 women and men per decade. The test subjects collected the duplicates of all consumed foods, beverages and sweets on 7 consecutive days. All of them were asked not to change their eating habits. The test subjects kept a daily record of the food consumed, allowing not only the calculation of the magnesium intake (basket method) but also a comparison of this method with the findings of the duplicate method. The balance studies were carried out in 1996 and 1997.

As well as collecting food duplicates in these studies, urine and faeces, and in two groups the milk as well, were collected every day from the test subjects and analysed. Dry weight of the samples was determined after drying at 60 °C until weight constancy. Analysis of magnesium was carried out after dry ashing of the samples at 450 °C and dissolution of the ashes in 2.5 % HCl. Magnesium was determined by atomic absorption spectrophotometry (AAS3, Carl Zeiss Jena, Jena, Germany) or ICP-OES (Spectroflame D, Spectro Analytical, Kleve, Germany). Analytical precision was determined by using reference materials with certified magnesium content.

Mg balance –7 +1 –11 +11

Table 2. Overview about the different studies: duplicate and/or balance, number of test groups and number of participating individuals in every test group in the different studies.

<table>
<thead>
<tr>
<th>Year</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany, 1988</td>
<td>4/7</td>
<td>4/7</td>
</tr>
<tr>
<td>(GDR before unification) duplicate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany, 1992</td>
<td>6/7</td>
<td>6/7</td>
</tr>
<tr>
<td>duplicate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany, 1996</td>
<td>4/3 x 7, 1 x 10</td>
<td>4/3 x 7, 1 x 10</td>
</tr>
<tr>
<td>duplicate and balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany, 1996</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>vegetarians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>duplicate and balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico, 1996</td>
<td>2/7</td>
<td>2/7</td>
</tr>
<tr>
<td>duplicate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany, 1997</td>
<td>2/7</td>
<td>–</td>
</tr>
<tr>
<td>young women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supplementation study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>duplicate and balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany, 1997</td>
<td>2/7</td>
<td>–</td>
</tr>
<tr>
<td>lactating women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supplementation study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>duplicate and balance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Mg intake (mg/day; mean ± SD) of adults eating self-selected diets, measured by duplicate studies.

<table>
<thead>
<tr>
<th>Year</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>193 ± 56</td>
<td>248 ± 69</td>
</tr>
<tr>
<td>1992</td>
<td>213 ± 79</td>
<td>260 ± 104</td>
</tr>
<tr>
<td>1996</td>
<td>205 ± 72</td>
<td>266 ± 92</td>
</tr>
<tr>
<td>Germany, Vegetarians</td>
<td>376 ± 101</td>
<td>474 ± 199</td>
</tr>
<tr>
<td>Mexico</td>
<td>301 ± 95</td>
<td>318 ± 122</td>
</tr>
</tbody>
</table>

Table 4. Magnesium intake, excretion and balance (mg/day) of adult omnivores and vegetarians in a duplicate study (mean ± SD).

<table>
<thead>
<tr>
<th>Omnivores</th>
<th>Vegetarians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>Women</td>
</tr>
<tr>
<td>Mg intake</td>
<td>205 ± 72</td>
</tr>
<tr>
<td>Mg excretion:</td>
<td></td>
</tr>
<tr>
<td>urine</td>
<td>75 ± 48</td>
</tr>
<tr>
<td>faeces</td>
<td>137 ± 123</td>
</tr>
<tr>
<td>Mg balance</td>
<td>–7</td>
</tr>
</tbody>
</table>
Mg excretion

Mg intake 363 ± 76 248 ± 79

about 100 mg/day, an amount that must be absorbed daily for

and possibly losses via sweat. Together these losses add up to

caused by magnesium losses via urine, excretion into the gut

sate for earlier losses. The daily magnesium requirement is

just enough to remain in homeostasis or is sufficient to compen-

these data however, if the magnesium content in the food is

magnesium from the body. It cannot be concluded from

homeostasis, as there was no significant net uptake or loss of

per day is sufficient to maintain the normal magnesium

women and men an uptake of 205 resp. 266 mg magnesium

Table 6. Magnesium intake, excretion and balance (mg/day) in a lactation study in pregnant/lactating women (100 mg Mg/day, 3 weeks supplementation, duplicate and balance study from day 15 to 21; mean ± SD)

Supplement (n = 7) Placebo (n = 7)

Mg intake 363 ± 76 248 ± 79

Mg excretion

urine 97 ± 35 77 ± 35

faeces 298 ± 198 203 ± 153

Mg balance −32 −32

Discussion

The results of these studies show that in adult healthy

women and men an uptake of 205 resp. 266 mg magnesium

der day is sufficient to maintain the normal magnesium homeostasis, as there was no significant net uptake or loss of magnesium from the body. It cannot be concluded from these data however, if the magnesium content in the food is just enough to remain in homeostasis or is sufficient to compen-
sate for earlier losses. The daily magnesium requirement is

cased by magnesium losses via urine, excretion into the gut and possibly losses via sweat. Together these losses add up to

about 100 mg/day, an amount that must be absorbed daily for

the individual to stay in magnesium balance. The usual magne-
sium content of the diet seems to be sufficient to fulfill the needs of the body. In addition, the body is able to adapt to a wide variety of intakes, by reducing or increasing the loss of magnesium.

If homeostatic mechanisms are adequate, then magne-
sium deficiency should be rare. However, an epidemiological

study in Germany [11] showed that low serum magnesium concentrations are found in about 5–8 % of the overall popu-

lation of various ages; in young women however, between the ages of 18–22 the incidence was much higher, being 20 %.

A clear cut decrease of the magnesium content of human rib with increasing age could be observed from about

3500 mg/kg dry mass at age 0–1 years to less than 2000 mg/kg dry mass at age 80–89 years (Fig. 1).

Table 5. Magnesium intake, excretion and balance (mg/day) in a placebo-controlled double-blind supplementation study in young women (100 mg Mg/day, 3 weeks supplementation, duplicate and balance study from day 15 to 21; mean ± SD)

Supplement (n = 7) Placebo (n = 7)

Mg intake 363 ± 76 248 ± 79

Mg excretion

urine 97 ± 35 77 ± 35

faeces 298 ± 198 203 ± 153

Mg balance −32 −32

Table 6. Magnesium intake, excretion and balance (mg/day) in a supplementation study in pregnant/lactating women (100 mg Mg/day from the 8th month of pregnancy to the 35th day of lactation; duplicate and balance study; day 29 to 35 of lactation; mean ± SD)

Supplement (n = 7) Control (n = 7)

Mg intake 421 ± 67 242 ± 85

Mg excretion

milk 28 ± 6 32 ± 8

urine 104 ± 88 61 ± 29

faeces 285 ± 217 117 ± 123

Mg balance +4 +32

Figure 1. Magnesium content of human bone (rib); mean ± SD, n=10
magnesium, is very well maintained. In animal experiments it has been shown that a reduction of total intracellular magnesium can only be achieved by feeding fast growing animals a severely magnesium deficient diet [13]. Only when the plasma magnesium concentrations were reduced to below 0.2 mmol/l could a slight reduction of intracellular magnesium content be detected.

In spite of being in magnesium balance, it was found that the magnesium content of bones declines with age. As the main part of body magnesium is located within the bones this reflects a continuous loss of magnesium from the body. This loss of magnesium, however, might be so small on a daily basis that it cannot be detected with balance studies that are prone to large methodological variations. Part of the bone magnesium is in equilibrium with the extracellular magnesium [14]. In growing animals magnesium deficiency induced a rapid loss of bone magnesium [15]. Bone magnesium, therefore, represents a magnesium reservoir that buffers extracellular magnesium concentration. In humans this magnesium buffering capacity is obviously reduced with increasing age. This might be explained by slight changes in acid-base balance at increasing age. Due to a reduced ability to excrete acid together with an increased nutritional acid load a general loss of minerals from the skeleton occurs with increasing age [16]. The normal content of magnesium in the diet seems not to be high enough to avoid this magnesium loss from the bones, as over a lifetime nearly half of the magnesium content of bone is lost. There is evidence that a decreased magnesium content in bone also contributes to the problem of osteoporosis [17] as animal experiments [18] and human studies [19, 20] have shown a positive effect of supplementing magnesium on bone density and bone absorption parameters. The main effects of magnesium deficiency (ie neuromuscular hyperexcitability, cardiac arrhythmias) are caused by changes in extracellular magnesium concentrations producing direct membrane effects and magnesium/calcium interactions [21], and not due to changes in intracellular magnesium. Moreover, the pharmacological actions of magnesium infusions can also be mainly explained by an extracellular effect of the increased plasma magnesium concentration [22].

Even though the magnesium content in the diet seems to be high enough to stay in magnesium balance these studies provide little information concerning the regulation of the plasma magnesium concentration. Magnesium in plasma represents only a small part (less than 1 %) of total body magnesium stores. Magnesium concentration in plasma is a result of absorption from the intestines, excretion by the kidney and release or uptake from intracellular stores and bone. It is not clear how the extracellular magnesium concentration is regulated. Divalent cation sensing receptors of the blood vessels in the kidney might be involved by regulating reabsorption of ultrafiltered magnesium [1]. The normal range of plasma magnesium concentration is 0.75 to 1 mmol/l [23], but concentrations less than this are often found [11]. These low plasma magnesium concentrations may not necessarily result from a negative magnesium balance but could be caused by a changed regulation of extracellular magnesium without affecting intracellular stores.

Although in general, serum magnesium concentration is a bad predictor of the probability of disease (see Elwood and Pickering, this Journal) Liao et al. [24] showed that the probability of coronary heart disease was significantly reduced in subjects having a high normal plasma magnesium concentration; the higher the magnesium concentration the lower the probability of myocardial infarction. The recommendations in the US or in Germany, Austria and Switzerland (Table 1) are sufficient for individuals to stay in a magnesium balance. However, the concept of avoiding a magnesium deficiency does not take into account the possible benefits of a high plasma magnesium concentration.

Investigation into the possible diet in Palaeolithic hunter/ gathering societies showed a magnesium uptake of about 600 mg magnesium/day, much higher than today [25]. The homeostatic mechanisms regulating the plasma magnesium concentration and our genome are still the same as those of our ancestors, which probably means that our metabolism is best adapted to a high magnesium intake. The magnesium intake although sufficient to avoid overt magnesium deficiency in most of the population might not be high enough to provide the possible risk reduction of a higher than normal plasma magnesium concentration. In agreement with this is that numerous studies have shown that at least 300 mg magnesium/day must be given in addition to the normal magnesium content of the diet to establish significantly increased serum magnesium concentrations [26]. In conclusion, the concept of widespread magnesium deficiency in our population seems to be inappropriate, since the normal physiological action of a reduced ability to adapt to a wide variation in magnesium intake. However, there could be a subgroup in the population who are unable to stay in magnesium balance with the normal magnesium content of the diet. This might be either because of genetic differences in magnesium homeostatic mechanisms and/or because of age-dependent changes in magnesium homeostasis. It remains to be established how to detect this subgroup and how to treat them. In persons with genetically determined magnesium deficiency an uptake of more than 1000 mg magnesium per day is sometimes required to avoid symptoms of magnesium deficiency [27]. Finally, since an increased plasma magnesium concentration could contribute to a risk reduction in coronary artery disease or osteoporosis it might be considered worthwhile trying to achieve this. However, a much higher magnesium intake than the current recommendations would be required to accomplish this aim.

References

with serum magnesium. Recommendations for diagnosis of magnesium defi-
13. Vormann J, Günther T, Höllriegl V, Schümann K. Pathobiochemical effects of
57: 227–9.
Effects of magnesium deficiency on magnesium and calcium content in bone
and cartilage in developing rats in correlation to chondrotoxicity. Calcif Tissue
composition in adult humans: role of age-related renal functional decline. Am
17. Rude RK, Olerich M. Magnesium deficiency: possible role in osteoporosis
18. Rude RK, Kirchen ME, Gruber HH, Stasky AA, Meyer MH. Magnesium defi-
year controlled trial of peroral magnesium in osteoporosis. Magnes Res 1993;
6: 155–63.
Wilders-Trüschning M, Lau KH. Daily oral magnesium supplementation sup-
presses bone turnover in young adult males. J Clin Endocrinol Metab 1998;
83: 2742–8.
21. Günther T, Vormann J. Intracellular Ca2+-Mg2+ interactions. Ren Physiol
Biochem 1994; 17: 279–86.
22. Vierling W. Comments on the kinetics and extracellular effects of potassium
352: 391–6.
24. Liao F, Folsom AR, Brancati FL. Is low magnesium concentration a risk factor
for coronary heart disease? The Atherosclerosis Risk In Communities (ARIC)
25. Eaton SB, Eaton SB 3rd. Paleolithic vs. modern diets – selected pathophys-
in magnesium plasma level after orally administered trimagnesium dicitrate.
27. Liebscher D-H, Liebscher D-E. Hereditäre Magnesiummangel tetanie – Ein
Mitteilungen aus der Redaktion

Besuchen Sie unsere
zeitschriftenübergreifende Datenbank

☑ Bilddatenbank ☑ Artikeldatenbank ☑ Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss
Bitte beachten Sie auch diese Seiten:
Impressum Disclaimers & Copyright Datenschutzerklärung