Evaluation of Prognostic Stratification of Patients with Chronic Heart Failure by Recovery Cardiopulmonary Indices Compared to Cardiopulmonary Exercise Indices

Klainman E, Sakhnovski S, Yarmolovsky A, Rosenberg I
Fink G

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Evaluation of Prognostic Stratification of Patients with Chronic Heart Failure by Recovery Cardiopulmonary Indices Compared to Cardiopulmonary Exercise Indices

E. Klainman1,2, S. Sakhnovski2, A. Yarmolovsky2, I. Rosenberg2, G. Fink2

Correspondence to: Prof. Eliezer Klainman, MD, “Gefen” Cardiac Health Center, 1, Korazim St., Givatayim, Z. C. 53583, Israel; e-mail: klainman@zahav.net.il

Background: Cardiopulmonary exercise testing (CPET) with monitoring of gas exchange parameters provides useful information on exercise capacity and prognosis in congestive heart failure (CHF). Little is known about prognostic importance of recovery cardiopulmonary indices in CHF patients. Objective: The objective of this study is to evaluate the CPET-based recovery cardiopulmonary indices as predictive prognostic factors for death and readmissions. Methods: 104 patients with CHF, 81 males (77.9 %), mean age 50.3 years (SD = 13.9), were studied. 39 patients (37.5 %) had diabetes mellitus (DM), 26 (25.0 %) had COPD, 46 (44.2 %) had ischemic heart disease (IHD), and 74 (71.2 %) had hypertension. All patients underwent CPET, including recovery indices, and were followed between 2000 and 2005 for all-cause mortality and for admission (as end point events). Exercise indices were: HR, BP, O2 consumption (VO2), O2 pulse (O2-P), ventilation (V̇e), respiratory exchange ratio (RER), and ventilatory anaerobic threshold (VAT), among others. Recovery indices were: ½ time recovery of VO2 (½VO2-t-Rec.), in sec; ½ time recovery of O2-P (½O2-P-t-Rec.), in sec; and full-time recovery of VO2 (VO2-T-Rec./RER-max (p < 0.044). By multivariate logistic regression analysis, peak-V̇e (regression coefficient = –0.083), ½VO2-t-Rec (p < 0.025); ½O2-P-t-Rec (p < 0.019); ½VO2-t-Rec/RER-peak (p < 0.020); ½VO2-P-t-Rec/RER-peak (p < 0.0000); VAT (p < 0.020); ½VO2-P-t-Rec (p < 0.025); ½O2-P-t-Rec (p < 0.020); ½O2-P-t-Rec × RER-peak (p < 0.020); ½VO2-t-Rec × RER-peak (p < 0.020); ½O2-P-t-Rec × RER-peak (p < 0.020); ½VO2-P-t-Rec × RER-peak (p < 0.021); ½VO2-t-Rec/RER-max (p < 0.000); ½VO2-P-t-Rec/RER-max (p < 0.013); ½VO2-P-t-Rec × RER-max (p < 0.004); and ½VO2-P-t-Rec × RER-max (p < 0.044). By multivariate logistic regression analysis, peak-V̇e (regression coefficient = –0.083), ½VO2-t-Rec/RER-peak (regression coefficient = –0.216), ½VO2/P-t-Rec/RER-max (regression coefficient = 0.272), and DM (regression coefficient = 0.705) were found as the independent predictors of all-cause mortality. Conclusions: Recovery cardiopulmonary parameters, as defined in the present study, were found to be significant prognostic predictors at least as exercise indices. Thus, it is suggested to complete the CPET with continuing monitoring during the whole recovery period for further evaluation of CHF patients. J Clin Basic Cardiol 2012; 15 (online): 13–6.

Key words: heart failure, cardiopulmonary exercise testing, VO2 recovery kinetics, prognostic factors

Cardiopulmonary exercise testing (CPET), when properly performed, provides an objective measurement of peak functional capacity and as such has become an important clinical tool for disease severity estimation and for outcome prediction in patients (pts) with chronic heart failure (CHF) [1]. This very test is considered to be the gold standard for the prognostic evaluation of such pts, and low peak-VO2 is widely recognized as a predictor of poor prognosis [2–4]. Other prognostic factors which have gained interest in recent years were VE/VCO2 slope and heart rate recovery (HRR) for their prognostic power independent from peak-VO2 [5–7]. The VE/VCO2 slope was also found not to be affected by the exercise mode at least in pts with mild CHF [8]. Other studies have shown that oxygen uptake kinetics during recovery from exercise are delayed at more advanced stages of heart failure and that the kinetics of recovery oxygen uptake can be used to measure the functional capacity of CHF pts [9–14]. There is a lack of data regarding the prognostic significance of recovery cardiopulmonary indices in pts with CHF. In the present study, we try to define such a significance of various recovery parameters, taking in account the fact that many pts with CHF do not reach maximal predicted physiological effort during exercise.

Material and Methods

104 pts with CHF, 81 males (77.9 %), mean age 50.3 years (SD = 13.9), were included in the study. They were selected from a pool of 150 pts with CHF who underwent CPET according to the following criteria:

- Age 18–80
- Systolic CHF, with LVEF ≤35 %
- Satisfying data inquired for the study

39 patients (37.5 %) had diabetes mellitus (DM), 26 (25.0 %) had COPD, 46 (44.2 %) had ischemic heart disease (IHD), and 74 (71.2 %) had hypertension. All pts underwent CPET, including recovery indices, and were followed from 2000–2005 for all-cause mortality and for admission (as end point events).

Cardiopulmonary Exercise Test

An upright symptom-limited test was performed on an electronically braked cycle ergometer (Ergo-line 800). Exercise was initiated after a 3-minute rest and 2 minutes of free pedalling at a rate of 60 rpm. The effort was then progressively increased by 10–20 Watt/min until the predefined end-point was reached, namely, symptoms, volitional fatigue, or attainment of the target HR. Cardiopulmonary data were collected by an online metabolic unit (CPX Medical Graphics, MN, USA).

Patients breathed through a low-resistance, 2-way valve (Hans-Rudolph, MO, USA) connected to the expiratory limb. The breath-by-breath signals were integrated by a computer to yield 30-sec and averages of HR, minute ventilation, VO2, V̇CO2 and O2-P (VO2/HR). VAT was defined as the point at which the ventilatory equivalent of O2 (Ve/VO2) increased in the absence of a similar increase in the ventilatory equivalent of CO2 (Ve/VCO2), as described by Beaver et al [15]. Blood pressure was measured at rest, every 2 minutes, at peak exercise and during recovery.
Blood pressure at rest, during exercise, and recovery was measured as for a standard.

Recovery indices were defined as: ½ time recovery of VO2 (½VO2-t-Rec.), in sec; ½ time recovery of O2-P (½O2-P-t-Rec.), in sec; and full-time recovery of VO2 (VO2-T-Rec.), in min, until RER reached value of 1 or less.

Since the pts included in the study had various degrees of CHF, not all of them reached the expected peak exercise, namely, RER of at least 1.15. Therefore, we had to define new combined parameters, involving the RER index, which might minimize the effect of this limitation. These 12 parameters were defined as follows:

1. VO2-T-Rec./RER-peak (parameter A)
2. ½VO2-t-Rec./RER-peak (parameter B)
3. ½O2-P-t-Rec./RER-peak (parameter C)
4. VO2-T-Rec. × RER-peak (parameter D)
5. ½VO2-t-Rec. × RER-peak (parameter E)
6. ½O2-P-t-Rec. × RER-peak (parameter F)
7. VO2-T-Rec./RER-max. (parameter G)
8. ½VO2-t-Rec./RER-max. (parameter H)
9. ½O2-P-t-Rec./RER-max. (parameter I)
10. VO2-T-Rec. × RER-max. (parameter J)
11. ½VO2-t-Rec. × RER-max. (parameter K)
12. ½O2-P-t-Rec. × RER-max. (parameter L)

VO2-T-Rec.: full-time recovery of oxygen consumption (in minutes); ½VO2-t-Rec.: half-time recovery of oxygen consumption (in seconds); ½O2-P-t-Rec.: half-time recovery of oxygen pulse (in seconds); RER-max.: maximal respiratory exchange ratio achieved in exercise or recovery; RER-peak: peak respiratory exchange ratio at exercise.

Follow-Up Period
All pts were followed from 2000–2005 for at least 2 years per patient, continuously or until death. Follow-up visits of the pts were at the hospital outpatient CHF clinic and/or by their general physician. Each significant event like hospitalization and all-cause mortality were taken from the patients’ computerized files for statistical prognostic evaluation.

Statistical Analysis
T-test or Chi-square test were used to compare the parameters between the groups “deceased” vs “survived” and “hospitalized” vs “not hospitalized”. Each parameter was presented as mean ± 1 SD. Multivariate logistic regression analysis models were used for identification of non-dependent prognostic parameters. P < 0.05 was considered statistically significant.

Results
Figure 1 shows the patients’ age spread.

The all-cause mortality rate was 24.0 % (n = 25). Significant correlations were demonstrated between all-cause mortality and peak-Ve (p < 0.007); peak-VO2 (% pred.; p < 0.001); peak O2-P (p < 0.000); VAT (p < 0.023); ½VO2-t-Rec (p < 0.019); VO2-Rec/RER-peak (RER at peak exercise) (p < 0.002); VO2-T-Rec/RER-peak (p < 0.020); ½VO2-t-Rec × RER-peak (p < 0.000); VO2-T-Rec × RER-peak (p < 0.021); ½VO2-t-Rec/RER-max (maximal RER at exercise or recovery) (p < 0.000); VO2-T-Rec/RER-max (p < 0.013); ½VO2-t-Rec × RER-max (p < 0.003); VO2-T-Rec × RER-max (p < 0.044; Table 1).

Table 1. Relationship between CPET indices and death (n = 104).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Survivors (n = 79)</th>
<th>Deceased (n = 25)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean 1 SD</td>
<td>Mean 1 SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>45.9 12.8</td>
<td>48.7 17.1</td>
<td>0.560</td>
</tr>
<tr>
<td>Male %</td>
<td>84.0 –</td>
<td>75.9 –</td>
<td>0.398</td>
</tr>
<tr>
<td>Female %</td>
<td>16.0 –</td>
<td>24.1 –</td>
<td>0.398</td>
</tr>
<tr>
<td>Peak-Ve*</td>
<td>45.1 13.6</td>
<td>38.7 8.3</td>
<td>0.007</td>
</tr>
<tr>
<td>Peak-VO2, ml/kg/min</td>
<td>13.1 4.4</td>
<td>11.5 4.2</td>
<td>0.125</td>
</tr>
<tr>
<td>Peak-VO2, %*</td>
<td>50.2 12.4</td>
<td>40.4 11.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Peak-O2-Pulse, %*</td>
<td>71.4 19.9</td>
<td>57.1 13.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Peak-O2-Pulse, ml/beat*</td>
<td>9.0 2.4</td>
<td>6.7 1.7</td>
<td>0.000</td>
</tr>
<tr>
<td>VAT, %*</td>
<td>32.6 8.7</td>
<td>27.6 7.2</td>
<td>0.020</td>
</tr>
<tr>
<td>peak-HR*</td>
<td>113.9 32.5</td>
<td>101.2 28.1</td>
<td>0.087</td>
</tr>
<tr>
<td>WATTS*</td>
<td>56.7 17.4</td>
<td>47.0 18.2</td>
<td>0.025</td>
</tr>
<tr>
<td>RER</td>
<td>1.13 0.1</td>
<td>1.14 0.1</td>
<td>0.694</td>
</tr>
<tr>
<td>METS*</td>
<td>50.2 12.3</td>
<td>40.0 11.3</td>
<td>0.001</td>
</tr>
<tr>
<td>VO2-T-Rec, min</td>
<td>6.9 2.3</td>
<td>6.9 2.4</td>
<td>0.920</td>
</tr>
<tr>
<td>½VO2-t-Rec, sec*</td>
<td>120 40.7</td>
<td>156 60.4</td>
<td>0.025</td>
</tr>
<tr>
<td>O2-Pulse-t-Rec, sec*</td>
<td>206 70.7</td>
<td>250.4 89</td>
<td>0.019</td>
</tr>
<tr>
<td>A</td>
<td>6 1.7</td>
<td>5.9 1.9</td>
<td>0.819</td>
</tr>
<tr>
<td>B*</td>
<td>107.2 45.4</td>
<td>142.4 50</td>
<td>0.002</td>
</tr>
<tr>
<td>C*</td>
<td>183 64</td>
<td>220 75</td>
<td>0.020</td>
</tr>
<tr>
<td>D</td>
<td>8 3</td>
<td>7.9 3</td>
<td>0.957</td>
</tr>
<tr>
<td>E*</td>
<td>137 56.2</td>
<td>190.2 78.9</td>
<td>0.000</td>
</tr>
<tr>
<td>F*</td>
<td>231.6 99</td>
<td>288 100.3</td>
<td>0.021</td>
</tr>
<tr>
<td>RER-max</td>
<td>1.4 0.2</td>
<td>1.4 0.2</td>
<td>0.831</td>
</tr>
<tr>
<td>G</td>
<td>4.8 1.3</td>
<td>4.9 1.6</td>
<td>0.842</td>
</tr>
<tr>
<td>H*</td>
<td>84.3 37.4</td>
<td>119 47.1</td>
<td>0.000</td>
</tr>
<tr>
<td>I*</td>
<td>147.6 50.5</td>
<td>182.4 63.3</td>
<td>0.013</td>
</tr>
<tr>
<td>J</td>
<td>10.2 4.3</td>
<td>9.8 4</td>
<td>0.696</td>
</tr>
<tr>
<td>K*</td>
<td>172 70</td>
<td>228.4 80</td>
<td>0.003</td>
</tr>
<tr>
<td>L*</td>
<td>296.3 120</td>
<td>355.7 130</td>
<td>0.044</td>
</tr>
<tr>
<td>HRR</td>
<td>22.5 11.6</td>
<td>23.8 12.6</td>
<td>0.644</td>
</tr>
</tbody>
</table>

Ve: ventilation in l/min; VO2: oxygen consumption; O2-Pulse: oxygen pulse; VAT: ventilatory anaerobic threshold; HR: heart rate; RER: respiratory exchange ratio; METS: metabolic units; T: time; rec: recovery; A–L parameters: see Methods section; HRR: heart rate recovery.
ORIGINAL PAPERS, BASIC CARDIOLOGY

CHF Prognosis Evaluation by Recovery Cardiopulmonary Parameters

The main results are summarized in Tables 1–4.

There were no factors which predicted hospitalisations. The main reason for this finding might be the fact that only 7 out of the 104 pts were not hospitalized during the follow-up period (Table 2).

By multivariate logistic regression analysis, peak-Ve (regression coefficient = –0.083; p = 0.043), and \(\frac{1}{2} V_O_2\text{-t}-\text{Rec}/RER-\text{peak} \) (regression coefficient = –0.216; p = 0.068) and DM (regression coefficient = 0.705; p = 0.062) were borderline independent predictors (Table 3).

Table 4 shows that background diseases of IHD or DM are prognostically significant for death while COPD or HTN are not.

Discussion

In daily practice, peak-VeO2 significantly influences decisions regarding the management of pts with CHF and is considered to be an important mortality predictor in such pts [15–21]. However, this very index depends on the mode of exercise particularly in such CHF pts [8, 22–24]. The independent prediction power of other indices, like Ve/VCO2 or heart rate recovery (HRR), are still to be proven. On the other hand, exercise intolerance in CHF pts is hard to quantify since the end point for the test is usually subjective, depending on motivation of the pt or the examiner. Even the VAT, which is independent of pt motivation, might be limited for prognostic evaluation especially in those with undetectable VAT [25, 26]. Therefore, it is necessary to identify new prognostic parameters which may strengthen the ability for such assessment of CHF pts. The present study demonstrates several recovery, as well as exercise, cardiopulmonary parameters as prognostic predictors in pts with CHF. All-cause mortality is significantly correlated with several exercise CPET indices but not less significantly with recovery indices as well (Table 1). According to regression analysis, Peak-Ve, \(\frac{1}{2} V_O_2\text{-t}-\text{Rec}/\text{RER-peak} \) and \(\frac{1}{2} V_O_2\text{-t}-\text{Rec}/\text{RER-max} \) are the most significant independent predictors of prognosis in CHF.

Exercise Indices

The study by Mancini et al [3] is still considered a cornerstone of the prognostic power of peak-VeO2 in the evaluation of CHF pts. Nevertheless, it is important to prove that...
exercise testing was truly maximal, a task which is quite hard to achieve in many CHF pts. In our study it was shown that this very parameter, especially when expressed by the percentage of maximal predicted values, has quite a strong predictive power for death. The O₂-pulse, which reflects the SV, percentage of maximal predicted values, has quite a strong predictor of death in CHF pts. VAT in the present study has been shown as a strong predictor of death in CHF pts (Table 1).

The only exercise index that was found to be significantly independent for all-cause mortality was peak-Ve (Table 3). It is a lack of information about this factor by itself but its relationship to VCO₂ is demonstrated to be an important prognostic predictor, as Ve/VCO₂ slope > 34 was associated with worse prognosis in CHF [27].

VAT suggests poor motivation or non-cardiac limitation of capacity, independent of patient motivation. A failure to reach peak-Ve/RER-peak) was borderline, as well as DM (Table 3). CHF pts with severe exercise intolerance need more objective indices for evaluation of maximal effort since their motivation to reach such an effort is limited or lacking [28].

Recovery Indices

In our study, we tried to evaluate the contribution of recovery cardiopulmonary indices in the prognostic prediction of CHF pts. To add objective strength, we defined additional parameters in which the already defined recovery indices were multiplied by or divided in the peak-RER achieved during exercise or maximal RER which was achieved during the whole recording within exercise or recovery period as well. Since such RER values might be affected by subjective factors like patient motivation, where pts do not reach the peak, physiological expected, RER of ≥ 1.15, as shown in the Mezzani et al study [29]; these new parameters might suggest a physiological correction to the bare recovery indices, which might be subjective as well. Table 1 demonstrates that the recovery indices %VO₂-recovery and %O₂-Pt-recovery are significant death-predicting factors in CHF, strengthened by the high significance of these very factors multiplied by or divided in the RER values (parameters: B, C, E, F, H, I, K, and L in Table 1). Nevertheless, from all these parameters, only factor H (%VO₂-t-recovery/RER-max) was found to be a significantly independent one for death prediction, while factor B (%VO₂-t-recovery/RER-peak) was borderline, as well as DM (Table 3).

Limitations and Conclusions

The main limitations of the present study were its retrospective character and the relatively small number of patients. Such a sample does not allow to calculate quantitatively the new recovery parameters checked in this study in relationship to prognostic significance. Nevertheless, these findings suggest that recovery indices should be recorded following the CPET for further prognostic evaluation in CHF. More studies, and with larger patient samples, are necessary for further quantitative assessment of recovery parameter values and their contribution to evaluate prognosis in CHF patients.

References:

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

- Bilddatenbank
- Artikeldatenbank
- Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

- Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:
- Impressum
- Disclaimers & Copyright
- Datenschutzerklärung