Percutaneous Treatment of Left Main Coronary Artery Stenoses

Sperker W, Glogar HD, Gyöngyösi M

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Percutaneous Treatment of Left Main Coronary Artery Stenoses

W. Sperker, M. Gyöngyösi, D. Glogar

The poor prognosis of patients with symptomatic left main coronary artery (LM) atherosclerosis treated medically could be improved considerably by coronary artery bypass graft (CABG) surgery. The first percutaneous transluminal interventions of LM stenosis revealed that such procedures were quite difficult to perform and that early mortality was too high to be accepted as a standard treatment. As a consequence, in 1984, the National Heart, Lung, and Blood Institute published a consensus that stenoses of the LM were a contraindication to percutaneous transluminal coronary angioplasty. However, percutaneous interventions on the LM remained in scope, as some patients with high risk for CABG, with contraindications to CABG or with very limited life expectancy still had no other option than a percutaneous intervention of the LM. Furthermore, in the last years, new percutaneous techniques have been developed for interventional cardiology: the use of stents or atherectomy, the use of assist devices like intraaortic balloon pumps or cardio-pulmonary support devices improved the acute and long-term outcome of percutaneous coronary interventions even in patients with high risk or unstable haemodynamic conditions.

On the basis of the haemodynamic situation, the outcomes of percutaneous interventions on protected and unprotected LM stenosis differ considerably: an unprotected LM stenosis paired with ischaemic syndromes always means a highly critical situation that has to be resolved in a very short time. Both protected and unprotected LM stenoses can be the reason for stable and unstable coronary syndromes; however, myocardial ischaemia caused by an unprotected LM stenosis is generally more severe as it is more often results in haemodynamic instability requiring emergency bypass surgery, or if an operation is not possible, an emergency percutaneous treatment. The results from percutaneous interventions of protected LM stenoses showed that this kind of treatment is technically easily feasible and associated with a low incidence of short-, mid- and long-term death, myocardial infarction or repeat revascularization (MACE). Elective interventions of unprotected LM stenoses also seem to be safe: short-, mid- and long-term follow-ups demonstrate an acceptably low rate of MACE. Although emergency percutaneous interventions of both protected and unprotected LM disease lead to fairly good acute procedural success rates, a high in-hospital mortality with a further decrease in long-term event-free survival rate, but an acceptable mortality rate can be expected. J Clin Basic Cardiol 2002; 5: 163–9.

Key words: angioplasty, stent, left main coronary artery, coronary artery disease

A s the oxygenization and nutrition of large parts of the myocardium depend on the left coronary artery (LM), a significant stenosis of the LM has major impacts on the function of the heart. The prevalences of LM stenosis in patients undergoing coronary angiography range from 2.5 to 10 %; additionally, nearly all patients suffer from a concomitant atherosclerotic disease of other coronary branches [1, 2]. In contrast, an isolated atherosclerotic lesion of the LM is very rare, with reported incidences of 0.15 and 0.07 % (of all angigraphed patients), respectively [3–5]. In the Catheterization Laboratories of the University of Vienna Medical Center, Austria, significant stenoses of the LM were diagnosed in 4.7 % of patients undergoing coronary angiography in the time between January 1998 and April 2001.

Exact angiographic detection of LM stenosis sometimes poses problems: Hermiller et al. demonstrated that unrecognized LM disease is widespread and the degree of stenosis is often underestimated in patients with normal LM angiograms undergoing interventional procedures [6]. The possible explanations for the limitation of plaque detection by angiography include compensatory vessel enlargement in the face of intracoronary plaque formation, the diffuse distribution of plaque in the vessel as well as technical limitations [7–9]. However, significant true intraluminal narrowings are rarely overlooked by angiography; in doubtful cases, intravascular ultrasound allows an exact determination of the morphology and degree of LM stenosis.

The LM has certain anatomic and histologic characteristics which distinguishes it from the distal coronary vessels. In men, the diameter of a normal non-diseased LM is 4.5 ± 0.5 mm and in women is slightly smaller, at 3.9 ± 0.4 mm [10]. The LM originates in the wall of the aorta ascendens; consequently, all diseases of the aorta affect the LM trunk. As the ostium of the LM lies within the aortic wall, the LM trunk lacks adventitia and has a considerable amount of smooth muscle cells and elastic tissue, surrounded by aortic smooth muscle cells. The amount of elastic tissue decreases distally in the coronary tree: thus, the LM trunk has the highest amount of elastic tissue of all the coronary vessels. That is why balloon dilatation of the LM trunk has the possibility of an excellent acute success but the danger of early and late recoil. These anatomic and histologic features of the LM might have contributed to the early discouraging reports on the first percutaneous LM interventions.

Patients who suffer from symptomatic LM atherosclerosis and who receive only medical treatment have a poor prognosis. The one-, two- and three-year survival rates of such patients were 67, 63 and 60 % in the Veterans Administration Cooperative Surgery Study (VACSS); the three-year survival rate reported from the CASS-Study reached 69 % [11]. However, in the ECSS (European Coronary Surgery Study), 82 % of the study population was alive after three years – an explanation for this high survival rate may be the younger age of these patients and the better left ventricular function [12]. Predictors of higher mortality with medical treatment included poor left ventricular function, older age, severity of LM stenosis and left coronary artery dominance. The 4-year survival rate of patients with 3-vessel-disease combined with a LM stenosis treated medically was 60 % in the CASS (Coronary Artery Surgery Study) study [13], while the 15-year survival of patients with medically treated LM stenosis was not more than 27 % [14].

All the studies demonstrated higher survival rates after coronary artery bypass graft operation (CABG) with three-
The Problems of Percutaneous Treatment of LM Stenoses

The VACSS study showed undoubtedly that coronary artery bypass graft (CABG) surgery brought big advantages in survival rates over the medical treatment of LM-stenoses [15]. Grüntzig et al. reported about the first percutaneous transluminal interventions (PTCI) of LM stenosis, and revealed that such procedures were quite difficult to perform and that early mortality was too high to be accepted as a standard treatment [16]. As a consequence, in 1984 the National Heart, Lung, and Blood Institute published a consensus [17] that stenoses of the left main coronary artery were a contraindication to percutaneous transluminal coronary angioplasty (PTCA).

However, in spite of all these discouraging experiences, percutaneous interventions on the LM remained in scope, as some patients with high risk for CABG (for example patients in a very critical haemodynamic status like acute myocardial infarction or cardiogenic shock), with contraindications to CABG or with very limited life expectancy still had no other option than a percutaneous intervention of the LM. Furthermore, in the last few years, new percutaneous techniques have been developed for interventional cardiology: the use of aortic balloon pumps or cardio-pulmonary support devices improved the acute and long-term outcome of percutaneous coronary interventions even in patients at high risk or with unstable haemodynamic conditions.

Consequently, percutaneous interventions of LM stenoses still remained a last therapeutic option for patients with contraindication(s) to CABG or high-risk for CABG. Additionally, besides elective interventions of the protected LM, elective percutaneous coronary angioplasties of unprotected LM stenoses have been attempted in rare cases with good short- and long-term results.

This article briefly overviews the present percutaneous interventional treatment options and their outcome in the case of LM disease.

Treatment Strategies for LM Stenoses

Although CABG is still regarded as the optimal choice of treatment for significant LM stenoses, an increasing number of angiographic centers reported an increasing number of percutaneous coronary interventions on LM stenoses. However, in comparison with the surgical approach, the attempts to treat LM stenoses percutaneously remained rare. The investigators of the ULTIMA Registry (Unprotected Left Main Trunk Intervention Multicenter Assessment) reported on 277 LM PCIs collected from 25 centers during 2 years [18]. Laruelle et al. performed 18 LM PCIs during 3 years [19], Lopez et al. 46 cases within 2 years [20], Karam et al. 39 LM PCIs during 2.5 years [21], Kornowski et al. 124 LM interventions during 3 years [22], Hoffman et al. 13 cases during 2 years [23], and most recently, Silvestri et al. performed 140 elective interventions during 3 years [24].

In our center, the Catheterization Laboratory of the University of Vienna Medical Center, 35 LM percutaneous interventions were performed during 2.5 years. During the registration period, 227 patients exhibited significant LM stenoses, 129 of them with an unprotected LM stenosis, while an open bypass artery protected the LM in 98 patients. 105 of the 129 patients with unprotected LM stenoses were bypass operated, 4 of 129 patients with stable angina died waiting for CABG and 20 of 129 patients underwent percutaneous interventions (18 of them emergency percutaneous angioplasty). In 25 of the 98 patients with protected LM stenosis the myocardial ischaemia was related to the LM disease: 5 patients underwent re-CABG, 1 patient received intracoronary thrombolysis, percutaneous transmyocardial laser revascularization was performed in 4 patients and elective PCI was done in 15 patients. In the remaining 73 of the 98 patients with protected LM disease, in whom the non-invasive diagnostic tests proved a myocardial ischaemia not related to LM disease, percutaneous coronary interventions were performed in another stenosed coronary artery or the patients were treated medically. The treatment strategies of LM stenoses of our Cath Lab represent the present status and guidelines for catheter interventions of LM atherosclerotic disease, as only 35 of 227 patients with significant LM stenoses were treated with percutaneous interventions.

From an early stage of the development and evaluation of LM percutaneous interventions two main groups of patients were differentiated regarding their prognostic outlooks: on the one hand patients with a protected LM stenosis in whom a patent bypass graft or natural collaterals protect the left anterior descending, the left circumflex coronary artery or both; on the other hand patients with unprotected LM stenosis.

First, in patients with protected LM stenosis, the myocardial ischaemia and all its symptoms may be related to other stenosed coronary arteries and not to the LM. In contrast, an unprotected LM stenosis paired with ischaemic syndromes always means a highly critical situation that has to be resolved in a very short time. Both protected (with ischaemia related to the LM) and unprotected LM stenoses can be the reason for stable and unstable coronary syndromes; however, myocardial ischaemia caused by an unprotected LM stenosis is generally more severe as it more often results in haemodynamic instability requiring emergency bypass surgery, or if an operation is not possible, emergency percutaneous invasive treatment.

Consequently, big differences between elective and emergency interventions of catheter-based LM interventions exist regarding the acute procedural success, short- and long-term mortality and the occurrence of major adverse cardiac events (MACE: acute myocardial infarction, target lesion revascularization or death). After the first reports on successful LM PCIs, it became obvious that elective procedures on protected and even unprotected LM stenosis can be safe and effective therapeutic choices [19–26]. In contrast, high in-hospital mortality (up to 83 %) with a further decrease in event-free survival during the follow-up have been reported [18, 19, 21, 27–30], with controversial conclusions about the feasibility and safety of catheter-based LM emergency interventions in patients with acute myocardial infarction and cardiogenic shock.

History of LM Percutaneous Treatment

After the first discouraging report on percutaneous interventions in unprotected LM stenoses by Grüntzig et al, Sterzer et al. [31] published the 41-month follow-up results. In 19 patients who had undergone balloon angioplasty of the LM: the results were relatively favourable with 12 patients [63 %] free from MACE after the 41-month follow-up. In 1989, O’Ree et al. [32] published a report on 127 patients treated...
by balloon angioplasty for LM disease: the best results were achieved in patients with protected LM circulation and the most unfavourable outcomes were observed after emergency interventions. Acute and long-term mortality, however, remained unsatisfactorily high, with 3-year survival rates of 90% (elective protected), 36% (elective unprotected) and 30% (acute). In the early 1990s, limited experiences from a few large referral centres were published. However, systematic data collection in the form of a multicenter registry (ULTIMA registry) was started in January 1994. Summarizing the results of this registry, Ellis et al. [28] concluded that percutaneous revascularization of unprotected LM stenosis should not be considered as an alternative to bypass surgery in most patients. However, in the following years, very promising data from other relatively large series were reported (Tabs. 1 and 2). In the next chapters we give an overview of the results from larger clinical studies on percutaneous treatment of LM stenoses, while the data on smaller patient cohorts are summarized in Tables 1, 2 and 3.

Elective Percutaneous Interventions of Unprotected LM Coronary Artery Stenoses

Balloon angioplasty

Miketic et al. published the results on 252 LM (44 unprotected LM) angioplasties performed between 1992 and 1997 and included in the the PTCA Registry of German community hospitals [29]. The overall procedure-related mortality was 9.1% in unprotected LM PTCA. The multivariate analysis identified the degree of LM protection (unprotected circulation) or protection by natural collaterals or by open bypass grafts, indication for angioplasty (stable/unstable angina pectoris, acute myocardial infarction) and left ventricular ejection fraction as independent predictors for procedure-related death [29]. As balloon angioplasty of the unprotected LM led to an unacceptably high procedure-related mortality, the authors did not recommend interventions on unprotected LMs, not even in emergency situations.

Kosuga et al. [33] reported their results from 107 patients who underwent the procedure under emergency (n = 24) or elective conditions (n = 83). The angiographic success rate was relatively high (96.4%), and the in-hospital mortality in the elective group low (3.6%). With limited use of stents (14% of the cases), the angiographic restenosis rate in the elective group of patients was high (40%).

Stent implantation

Laruelle et al. [19] published an analysis about 18 patients with unprotected LM-stenosis treated with stents (and additional rotational atherectomy in one patient) in 1998. The 10 elective interventions produced favourable results, with no additional rotational atherectomy result. In-hospital cardiac events and a low (20%) recurrence of LM stenoses. Like Silvestri et al. [24], the authors concluded that elective stenting may be a safe alternative to CABG in unprotected LM disease [34].

An example of an unprotected LM intervention in a 61 year old male is shown in Figure 1.

Atherectomy

The first multicenter study using balloon dilatation, stents, directional and rotational atherectomy for the treatment of unprotected LM stenoses was the ULTIMA registry, with the first results published by Ellis et al. in 1997 [28]. The authors demonstrated a technical success of 98.9% in elective cases, and found a significant inverse correlation between long-term cardiac events and left ventricular ejection fraction and presentation with progressive or rest angina. Furthermore, on the basis of their results, the authors recommended the usage of directional atherectomy and stenting as preferred techniques, and a follow-up angiography 6 to 8 weeks after treatment.

Kosuga et al. [35] reported on 101 patients who underwent directional atherectomy plus balloon angioplasty, with stents used in only 13% of the patients for bail-out situations and for a suboptimal atherectomy result. In-hospital MACE was 4.7% in the elective group (n = 86) and 20% in the emergency group (n = 15). After 3 years follow-up, 85.8% of the patients were free from cardiac deaths and 61.7% free from MACE.

Summarizing the results of the latest larger reported series, elective interventions of unprotected LM stenoses seem to be safe, if stents and in certain cases atherectomy before stent implantation is performed.
tation are used. Short-, mid- and long-term follow-up demonstrate an acceptably low rate of death, myocardial infarction and repeat revascularization.

Elective Percutaneous Treatment of Protected Left Main Coronary Artery Stenoses

Balloon angioplasty

Rupprecht et al. [36] published their experience on 14 balloon dilatation procedures of significant protected LM stenoses. Apart from one acute complication, 38 % of the patients had LM restenosis with no further need for revascularization at follow-up.

Stent implantation

Kornowski et al. [22] matched 88 patients with stenting with 36 patients with balloon angioplasty only for their protected LM stenoses. Procedural success was higher in the stent group with a significantly lower number of procedural complications. After 12 month follow-up, however, no clear difference in the event-free survival rates (78 % in the stent group vs 76 % for the balloon-angioplasty group) could be observed.

Lopez et al. [20] observed a significantly larger post-interventional minimal lumen diameter after stent implantation in comparison with non-stent treatment (directional atherectomy or balloon angioplasty) in 42 patients with protected LM stenoses. The authors concluded that the use of stents either alone or after initial atherectomy produces the best intermediate angiographic results. Moreover, the benefits of stenting were most pronounced for aorto-ostial lesions, which are generally troubled by elastic recoil. The pretreatment of heavily calcified LM stenoses with rotational atherectomy improved stent deliverability and expansion.

Atherectomy

In 1994 Laster et al. [37] reported on 22 patients with protected LM stenosis: 13 underwent elective atherectomy, while 9 patients received atherectomy after unsuccessful balloon angioplasty. After 24 month follow-up, the survival rate was 100 % with an event-free survival of 89 %.

Yasuda et al. [38] compared the angiographic and clinical outcomes after directional atherectomy (n = 13) with those after conventional balloon angioplasty only (n = 21) in patients with protected LM stenosis. The initial success rates as well as the follow-up results (late lumen loss, restenosis) were significantly better in patients treated with DCA.

The results from percutaneous interventions of protected LM stenoses showed that this kind of treatment is technically feasible and is associated with a low incidence of short-, mid- and long-term MACE. Long-term follow-up revealed that the use of balloon angioplasty alone was associated with a higher restenosis rate compared with intracoronary atherectomy or stent implantation.

Emergency Interventions on LM Stenosis

In the setting of an acute myocardial infarction, cardiogenic shock or in patients with severe unstable angina not treatable

Table 2. LM interventions with new devices

<table>
<thead>
<tr>
<th>1st author</th>
<th>Year of publication</th>
<th>No of patients</th>
<th>Protected / unprotected</th>
<th>Device</th>
<th>In-hospital complications</th>
<th>FUP time</th>
<th>FUP events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laster [37]</td>
<td>1994</td>
<td>22</td>
<td>22 prot</td>
<td>DCA</td>
<td>–</td>
<td>24 mo</td>
<td>20 event-free survivors</td>
</tr>
<tr>
<td>Ellis [28]</td>
<td>1997</td>
<td>91</td>
<td>91 unprot</td>
<td>PTCA 27 R.Ath 2 DCA 3 PTCA</td>
<td>11 deaths 4 AMI 1 CABG</td>
<td>12 mo</td>
<td>71 % survival 68 % event-free survival</td>
</tr>
<tr>
<td>Lopez [20]</td>
<td>1997</td>
<td>46</td>
<td>43 prot 3 unprot</td>
<td>PTCA 27 R.Ath</td>
<td>–</td>
<td>9 mo</td>
<td>6 TLR</td>
</tr>
<tr>
<td>Kornowski [22]</td>
<td>1998</td>
<td>124</td>
<td>124 prot 4 unprot 88 stent</td>
<td>PTCA 36 PTCA</td>
<td>1 death 1 em. CABG 12 AMI 12 mo</td>
<td>3 AMI 21 TLR</td>
<td></td>
</tr>
<tr>
<td>Laruelle [19]</td>
<td>1998</td>
<td>10</td>
<td>10 prot 10 stent</td>
<td>PTCA 27 R.Ath</td>
<td>1 TLR</td>
<td>10 mo</td>
<td>1 death</td>
</tr>
<tr>
<td>Park [26]</td>
<td>1998</td>
<td>42</td>
<td>42 unprot</td>
<td>PTCA 27 R.Ath</td>
<td>–</td>
<td>6 mo</td>
<td>7 TLR</td>
</tr>
<tr>
<td>Hofmann [23]</td>
<td>1999</td>
<td>13</td>
<td>13 unprot</td>
<td>PTCA 27 R.Ath</td>
<td>–</td>
<td>12 mo</td>
<td>2 TLR</td>
</tr>
<tr>
<td>Kosuga [33]</td>
<td>1999</td>
<td>107</td>
<td>107 unprot 83 elective</td>
<td>PTCA 27 R.Ath</td>
<td>12 deaths 1 AMI 7 TLR</td>
<td>35 mo</td>
<td>1 CABG 30 TLR</td>
</tr>
<tr>
<td>Wong [34]</td>
<td>1999</td>
<td>55</td>
<td>55 unprot</td>
<td>PTCA 27 R.Ath</td>
<td>–</td>
<td>16 mo</td>
<td>9 TLR 1 death</td>
</tr>
<tr>
<td>Silvestri [24]</td>
<td>2000</td>
<td>140</td>
<td>140 prot 140 unprot</td>
<td>PTCA 27 R.Ath</td>
<td>4 deaths 2 AMI 6 mo</td>
<td>3 deaths 1 AMI 20 TLR</td>
<td></td>
</tr>
<tr>
<td>Kosuga [35]</td>
<td>2001</td>
<td>101</td>
<td>101 unprot 86 elective</td>
<td>PTCA 27 R.Ath</td>
<td>6 deaths 1 AMI 4 TLR</td>
<td>34 mo</td>
<td>12 deaths</td>
</tr>
</tbody>
</table>

AMI = acute myocardial infarction; CABG = coronary artery bypass graft operation; DCA = directional coronary atherectomy; em. CABG = coronary artery bypass graft operation in emergency situation; FUP = follow-up; NA = data not available; mo = months; No = number; prot = protected LM; PTCA = percutaneous transluminal coronary angioplasty; R.ath = rotational atherectomy; resten. = restenosis of target lesion; TLR = target lesion revascularization; unprot = unprotected LM
by medication alone, the prognosis of a percutaneous intervention in the LM is not as favourable as in elective interventions and lower survival rates have to be expected. Ellis et al. [28] published a high procedure-related complication rate [25 %] and in-hospital mortality [69 %] of patients with acute myocardial infarction due to unprotected LM stenosis. Marso et al. [18] published a subanalysis of the ULTIMA registry on 40 patients with acute myocardial infarction (37 of them in cardiogenic shock) who underwent emergency percutaneous treatment of unprotected LM stenoses. The in-hospital death rate was 55 % for the entire group (70 % for the PTCA group and 35 % for the stent group). The 12 month survival rate was 35 % and 53 % for the PTCA and stent groups.

Using stents, balloon angioplasty and directional atherectomy for the emergency treatment of 24 patients with unprotected LM stenosis, Kosuga et al. [33] achieved an in-hospital survival rate of 62.5 % and a 5-year survival rate of approximately 50 %. In a second study using primarily directional atherectomy and stents for bail-out situations or suboptimal atherectomy results only, in-hospital survival was 86.7 %.

Although emergency percutaneous LM interventions lead to fairly good acute procedural success rates, this treatment option remains highly questionable, due to the high in-hospital mortality. Even though the survival rates after LM percutaneous interventions in emergency situations may seem extremely low, the bad results are similar to the results achieved in patients with cardiogenic shock for any cause. Interestingly, even if the patient’s haemodynamic condition can be stabilized, a high incidence of restenosis and low event-free survival rate with an acceptable long-term mortality has to be expected.

Catheter Complications Related to Left Main Disease

During diagnostic angiographic procedures or percutaneous coronary angioplasty of the other coronary arteries, the overall risk for a complication related to the LM is low;
Conclusions

Since the first percutaneous transluminal angioplasties of LM stenoses were performed, techniques and success rates of the percutaneous interventions have improved. Best results can be achieved in patients with protected LM stenosis undergoing elective percutaneous interventions: the high acute procedural success pairs with low acute, subacute and follow-up cardiac event rates. Elective interventions of unprotected LM stenosis can also be safe with low intervention complication rates; however, the percutaneous treatment must be performed more cautiously, with the use of cardiopulmonary assist devices and surgical stand-by. Patients in critical haemodynamic status due to acute closure of LM have a low chance to survive, and besides a high acute procedural success rate, high in-hospital mortality has to be expected. In these patients, after haemodynamic stabilization and successful percutaneous LM angioplasty, an elective CABG should be performed during the early follow-up period.

References

Percutaneous Left Main Interventions

J Clin Basic Cardiol 2002; 5: 169

Mitteilungen aus der Redaktion

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

☑ Bilddatenbank ☑ Artikeldatenbank ☑ Fallberichte

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.

Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.

Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo