Prognostic Factors in Meningioma

Roelcke U

European Association of NeuroOncology Magazine 2013; 3 (3)

100-101

Homepage:

www.kup.at/journals/eano/index.html

Online Database Featuring Author, Key Word and Full-Text Search

Member of the DOAJ
Prognostic Factors in Meningioma

Ulrich Roelcke

Abstract: Age, WHO grade, and extent of resection represent strong prognostic factors in meningiomas. The majority of further clinical factors and laboratory findings reflect disease according to the WHO grade. Therefore, research should focus on heterogeneity of prognostic factors within a given WHO grade. This may allow to identify also factors predictive for response to systemic therapy, and to promote the design of studies which stratify according to these factors.

Eur Assoc NeuroOncol Mag 2013; 3 (3): 100–1.

Key words: meningioma, prognosis, WHO grade, hormone receptors, angiogenesis, VEGF receptor, osteopontin

Introduction

The term “prognostic” relates to the behaviour of a tumour with regard to the spontaneous course as well as to the course after medical intervention. In contrast, the term “predictive” indicates the chance to respond to a given therapy. In meningiomas, the term “prognostic” is differently used across the literature and includes risk for incidence, risk for tumour development as well as risk for meningioma progression and recurrence. In the following, the term “risk factor” is used with regard to meningioma aetiology. “Prognostic” denotes factors which may determine the clinical course once a meningioma is diagnosed. “Predictive factors” particularly with regard to systemic therapy have not been evaluated in meningiomas.

Risk Factors

Genetic alterations, status of sex hormones, and ionizing radiation represent well-established risk factors in meningiomas. These tumours can be part of hereditary syndromes such as neurofibromatosis type 2 (NF2), Li-Fraumeni, Turcot, Gardner, von Hippel-Lindau, Cowden, Gorlin, and multiple endocrine neoplasia type 1 [1]. In neurofibromatosis type 2, there are probably several genes involved in the development of meningioma, ie, a significant risk was observed also in the absence of alterations on the NF2 gene [2]. The association between hormones and meningiomas is evident by the increased incidence of these tumours in women (female:male ratio up to 3:1), the presence of female hormone receptors on meningiomas, meningioma growth during pregnancy, and regression of meningioma after cessation of oestrogen agonist therapy [3–5]. In addition, also long-term use of oral contraceptives and post-menopausal hormonal replacement therapy increases the risk of developing meningioma [3]. Ionizing radiation induced meningiomas as a long-term complication of prophylactic cranial irradiation for leukaemia in childhood [6]. Whether radiographs of the mouth [7] or the use of mobile phones [8] represent risk factors is still a matter of debate.

Prognostic Factors

Prognostic factors can be grouped into clinical factors at first presentation, extent of resection, and laboratory markers obtained from tissue. Most studies present data on prognostic factors which show significant correlation with the WHO tumour grade.

Clinical Factors and Extent of Resection

Tumour recurrence and progression depend on characteristics of the individual tumour presentation as well as on treatment modalities. Histology predicts mortality and recurrence: relapse rates in WHO grade I (benign) / II (atypical) / III (malignant) of 7 / 40 / 80 % have been reported, and median survival in these studies was > 10 / 11.5 / 2.7 years, respectively [9,10]. Of note, even in the absence of the cellular criteria of WHO grade II also brain invasion qualifies for WHO grade II because recurrence and mortality rates are similar to atypical meningiomas [11]. Also meningiomas which present with bone invasion show poorer outcome compared to non-invading tumours [12]. Apart from WHO grade, age and extent of resection [13] represent strong prognostic factors as well. The extent of resection is graded according to the original description of Simpson (grades 1–5). Grade 1 denotes macroscopic gross total resection with excision of dura, sinus, and bone, whereas grade 5 denotes biopsy only [14]. On multivariate analysis, age < 40 years, male gender, less than gross-total resection, and a high mitotic index are independently associated with shorter progression-free survival [15]. However, although many patients with completely resected grade-I meningiomas can be considered as cured, late recurrences are observed even after 20 years [16]. As surgical options are determined by tumour location this factor has to be considered as well. While gross-total resection can be achieved in many tumours of the convexity, patients with skull-base tumours involving the petroclival region, cavernous sinus, or orbit are post-operatively left with a residual tumour of varying size. On the other hand, a follow-up study on incidental non-operated meningiomas showed that 26 % of skull-base tumours grow with a relative growth rate of 6.8 % per year, whereas 95 % of non-skull base tumours grow faster with a relative growth rate of 13.8 % per year during a median observation time of 49 months [17]. In line with this observation, Kane et al. reported on a series of 378 operated meningiomas (82 % WHO grade I; 56 % skull base, 44 % non-skull base tumours) where patients with non-skull base lesions were significantly more likely to have atypical or malignant meningiomas on univariate analysis and multivariate analysis [18]. The authors discussed that

Received on May 2, 2013; accepted on May 5, 2013; Pre-Publishing Online on May 23, 2013
From the Department of Neurology – Brain Tumor Center, Cantonal Hospital, Aarau, and the University of Basel, School of Medicine, Basel, Switzerland
Correspondence to: Ulrich Roelcke, MD, Department of Neurology – Brain Tumor Center, Cantonal Hospital, Tellstrasse 15, 5001 Aarau, Switzerland; e-mail: roelcke@ksa.ch

For personal use only. Not to be reproduced without permission of Krause & Pachernegg GmbH.
Acknowledgements

None.

References:
8. Hardy J, Carlinberg H, Mannsson K. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology 2013; 20; 85–110.

Conflict of Interest

The author states that no conflict of interest exists.