
Abstracts von Vorträgen und Postern

Journal für Mineralstoffwechsel & Muskuloskelettale Erkrankungen 2013; 20 (Sonderheft 2), 3-13

Indexed in SCOPUS/EMBASE/Excerpta Medica

www.kup.at/mineralstoffwechsel

Online-Datenbank mit Autoren- und Stichwortsuche
Loss of the Calcium-Sensing Receptor Provides a Growth Advantage to Colon Cancer Cells
A. Aggarwal, S. Tennakoon, M. Wohlgenannt, E. Kallay
Centre for Pathophysiology, Infectionology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Austria

Background The classical role of the calcium-sensing receptor (CaSR), an extracellular G protein-coupled receptor, is regulation of calcium homeostasis. In addition, it is involved in several cellular processes such as proliferation, differentiation, and apoptosis. The CaSR has been suggested to mediate the effects of calcium in delaying the onset of colorectal cancer (CRC). We have previously demonstrated that CaSR expression is downregulated in CRC, leading us to hypothesize that loss of CaSR might provide a growth advantage to transformed cells, conferring them resistance to calcium-mediated growth inhibition. Therefore the aim of the study was to understand the consequences of losing CaSR expression in CRC.

Methods and Results We analysed mRNA (qRT-PCR) and protein (immunofluorescence) expression of CaSR in two CRC cell lines: Caco-2/15 (well-differentiated adenocarcinoma) and HT-29 (moderately differentiated adenocarcinoma). HT-29 cells showed lower CaSR levels when compared with Caco-2/15 cells (30-fold lower mRNA expression), similar to our CRC patient cohort (n = 60), where we found significantly less CaSR expression in tumours compared with respective adjacent mucosa (p < 0.001).

To investigate the possible impact of CaSR on growth, we used a positive allosteric CaSR modulator, NPS R-568, that specifically modifies the CaSR structure, making it more susceptible to the effects of calcium. Using bromodeoxyuridine cell proliferation assay we established that Caco-2/15 cells, which express CaSR endogenously, had stricter proliferation control by calcium (2.25 times slower growth-rate, p < 0.05), whereas HT-29 cells were insensitive to this treatment. In Caco-2/15 cells this effect could be reversed with the negative allosteric CaSR modulator, NPS-2143.

To understand the consequences of losing CaSR expression in CRC, we transfected the HT-29 and Caco-2/15 cells to obtain cells overexpressing either the wild-type CaSR (OE-CaSR) or a CaSR harbouring an inactivating mutation (IM-CaSR). The cells transfected with the IM-CaSR construct grew significantly faster than the cells overexpressing the CaSR (Caco-2/15: 2.8 times faster; HT-29: 1.7 times faster; p < 0.0001). Calcium treatment (2 mM calcium vs 0 mM calcium) led to a strong proliferation inhibition in cells overexpressing the CaSR, which was lost in the IM-CaSR cells (p < 0.001).

Conclusion These results indicate that loss of CaSR expression gives CRC cells a growth advantage and sustains a malignant phenotype. These observations further strengthen our understanding of the molecular mechanism by which colon cancer cells lose their anti-proliferative features where expression of CaSR is lost.

Acknowledgments This project was funded by the Marie Curie Initial Training Network grant number FP7-264663. The authors would like to thank Prof. Romauld Mentaverri for the CaSR constructs and Prof. Sabina Baumgartner-Parzer for sequencing the cells for conformation of transfection.

Influence of the Organic Matrix of Mineralized Tissues on Their Dynamic Mechanical Properties Assessed by Scanning Acoustic Microscopy
S. Blauin, S. Puchegger, K. Klaushofer, P. Roschger, P. Fratzl
1 Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WKK and AUA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna; 2Faculty of Physics, Dynamics of Condensed Systems, University of Vienna, Austria; 3Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany

Mineralized tissues like bone, articular calcified cartilage, or mineralized turkey leg tendon (MTLT) are built by a composite of hydroxyapatite nano-particles and organic matrix. In bone and MTLT the matrix is formed by collagen type-I, but in contrast to bone in MTLT the collagen is uniaxially oriented, while in cartilage the matrix consists of collagen type-II and proteoglycans.

Composition/orientation differences were investigated by a new scanning acoustic microscopy method (SAM-TOF). Time-of-flight differences of ultrasound pulses obtained from human femoral head and distal MTLT samples with known thickness (30 microns) were determined with 0.125 ns time resolution to obtain sound velocity maps with 2 μm pixel resolution using a 330-MHz lens (Kibero GmbH). The velocity maps were combined with calcium content maps obtained by quantitative backscattered electron imaging to extract dynamic elastic moduli (E) maps.

Bone was found to require a lower mass density (~4.3 %) than cartilage to achieve similar velocity (range 3700–4300 m/s) or elastic modulus (range 22–30 GPa), which is qualitatively in line with nano-indentation results. In the circumferential compartment of MTLT, an axial/transversal velocity ratio of 1.13 and E ratio of 1.28 and in the interstitial compartment 1.16 and 1.32 ratios, respectively, were found. This anisotropy is clearly due to the preferred orientation of collagen. However, the higher E in cartilage-bone and lower ratio in MTLT compared with what is typically measured with (quasi-) static mechanical test such as uniaxial tension or nanoindentation could indicate an influence of relaxation processes.

These first results suggest that TOF scanning acoustic microscopy may be able not only to provide mechanical maps of mineralized tissues but to extend our understanding of the mechanical properties of bone and cartilage to the region of high loading rates, which may be highly relevant for the fracture resistance under an impact, eg, during a fall.

Bone Turnover Markers in Normal Pregnancy
A. Breithwieser, B. Swedja, W. Woloszczuk
Biomarker Design Forschungs GmbH, Wien, Österreich

Objective The aim of this study was to investigate the concentrations of bone turnover markers in normal pregnancy. Therefore osteoprogererin (OPG), free soluble RANKL, sclerostin, dickkopf-1 were determined with 0.125 ns time resolution to obtain sound velocity maps with 2 μm pixel resolution using a 330-MHz lens (Kibero GmbH). The velocity maps were combined with calcium content maps obtained by quantitative backscattered electron imaging to extract dynamic elastic moduli (E) maps.

Bone was found to require a lower mass density (~4.3 %) than cartilage to achieve similar velocity (range 3700–4300 m/s) or elastic modulus (range 22–30 GPa), which is qualitatively in line with nano-indentation results. In the circumferential compartment of MTLT, an axial/transversal velocity ratio of 1.13 and E ratio of 1.28 and in the interstitial compartment 1.16 and 1.32 ratios, respectively, were found. This anisotropy is clearly due to the preferred orientation of collagen. However, the higher E in cartilage-bone and lower ratio in MTLT compared with what is typically measured with (quasi-) static mechanical test such as uniaxial tension or nanoindentation could indicate an influence of relaxation processes.

These first results suggest that TOF scanning acoustic microscopy may be able not only to provide mechanical maps of mineralized tissues but to extend our understanding of the mechanical properties of bone and cartilage to the region of high loading rates, which may be highly relevant for the fracture resistance under an impact, eg, during a fall.

Bone Turnover Markers in Normal Pregnancy
A. Breithwieser, B. Swedja, W. Woloszczuk
Biomarker Design Forschungs GmbH, Wien, Österreich

Objective The aim of this study was to investigate the concentrations of bone turnover markers in normal pregnancy. Therefore osteoprogererin (OPG), free soluble RANKL, sclerostin, dickkopf-1...
Renal Elimination of Sclerostin Increases as Kidney Function Declines

D. Cejka1, R. Marculescu2, N. Kozakowski3, M. Pischke1, T. Reiter1, A. Gass1, M. Haas1
1Division of Nephrology and Dialysis Department of Medicine III, 2Department of Laboratory Medicine, 3Clinical Institute of Pathology, and 4Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria

Background Sclerostin is a soluble inhibitor of canonical Wnt-signalling, which is crucial for bone biology. Currently, anti-sclerostin antibodies are in clinical development for the treatment of osteoporosis. Osteoporosis and chronic kidney disease (CKD) often occur simultaneously. Sclerostin serum levels are increased in patients with CKD. It is unclear whether the increase of sclerostin serum levels in CKD patients is due to increased sclerostin production and/or decreased renal elimination.

Patients and Methods In this study, 120 patients with impaired kidney function were recruited for measurements of sclerostin in serum and urine (ELISA), renal function (eGFR), electrolytes, α1-microglobulin, parathyroid hormone, vitamin D, and markers of bone turnover. Eight human kidney biopsies were stained for sclerostin using immunohistochemistry.

Results Urinary sclerostin excretion increased with declining eGFR (R = −0.75, p < 0.001) from 10.4 (± 12.7) pmol/l in patients with eGFR > 90 ml/min/1.73 m² (CKD stage 1) to 117.9 (± 65.4) pmol/l in patients with eGFR < 15 ml/min/1.73 m² (CKD stage 5, p < 0.001). Fractional excretion of sclerostin (FeSclerostin) increased with declining eGFR (R = −0.83, p < 0.001) from 0.45 (± 0.6) % in CKD 1 to 26.3 (± 17.6) % in CKD 5 (p < 0.001). FeSclerostin correlated with fractional excretion of α1-microglobulin (Feα1-microglobulin, R = 0.82, p < 0.001). Sclerostin was detected in proximal tubular cells, showing a diffuse cytoplasmic staining pattern.

Conclusion Increased sclerostin serum levels in CKD patients are not due to decreased renal elimination. On the contrary, renal elimination increases with declining kidney function. Whether this has consequences on anti-sclerostin antibody dosing, efficacy, or safety in patients with CKD remains to be determined.

Low Bone Mineral Density in Friedreich Ataxia

A. Eigentler1, W. Nachbauer2, E. Donnenmiller3, W. Poewel1, R. W. Gassler1, S. Boesich1
1Department of Neurology, 2Department of Nuclear Medicine, and 3Department of Internal Medicine I, Innsbruck Medical University, Austria

Background Friedreich ataxia (FRDA) is the most common inherited neurodegenerative ataxia. Apart from predominant neurological features an involvement of the skeletal system in terms of scoliosis and foot deformities is frequent. Disease-related falls, mobility restrictions, and wheelchair-dependency in later disease stages might additionally compromise bone structure in FRDA. The aim of this pilot study was to systematically evaluate the bone status in a representative FRDA cohort.

Methods 28 FRDA patients were enrolled in this cross-sectional study. The mean age of the whole study population was 37.6 years, ranging from 22 up to 62 years. Neurological assessment, a questionnaire comprising the history of fractures and osteoporosis, as well as osteodensitometric measurements complemented with gen-
eral and bone-specific laboratory parameters were performed. The WHO Fracture Risk Assessment tool (FRAX®) was applied, calculating the 10-year risk of suffering an osteoporotic fracture.

Results Six patients (21.4%) presented with a bone mineral density below the expected range for age in at least one of the examined sites (femoral neck, lumbar spine, and forearm) irrespective of their gender. Corresponding Z-scores were significantly lower compared to normative values for the femoral neck and lumbar spine. Vitamin D status was insufficient in 11 and deficient in 8 FRDA patients. There was a strong negative correlation between ataxia severity, GAA repeat expansion, and bone density in the femoral neck of FRDA patients.

Conclusions This is the first report of an increased rate of low bone mineral density in FRDA. Given the increased risk of falls, this data rectifies routine bone mineral density measurements in FRDA, which may help to initiate therapeutic interventions to prevent this condition.

Role of DNA Methylation and Histone Modifications on Calcium-Sensing Receptor Expression in Colorectal Cancer

I. S. Fetahu, J. Höbaus, A., Aggarwal, D. M. Hummel, S. Tenkoorak, I. Mester, S. Baumgartner-Parzer, E. Källay

1Department of Pathophysiology and Allergy Research, 2Department of Pathology, and 3Department of Internal Medicine III, Medical University of Vienna, Austria

Numerous epidemiological studies have shown that low intake of calcium is related with higher incidence of colorectal cancer. The anti-proliferative effects of calcium in the colon are partially mediated by the calcium-sensing receptor (CaSR). In colorectal cancer the expression of the CaSR is lost as the tumour progresses. We hypothesized that DNA hypermethylation and imbalance of transcriptionally permissive/repressive histone alterations lead to loss of CaSR in colorectal tumours.

CaSR mRNA and protein expression was analyzed by qRT-PCR and immunofluorescence. We determined the methylation pattern of CaSR promoter by pyro- and bisulfite sequencing, methylation of lysine 4 (K4) and acetylation of lysine 9 (K9) on histone 3 (H3) were assessed by chromatin immunoprecipitation. In colorectal tumours we observed significantly lower CaSR mRNA expression (n = 65, p < 0.001) compared with adjacent mucosa from the same patient. Immunofluorescence staining confirmed downregulation of CaSR protein in tumours. The CaSR promoter was higher methylated in tumours compared with the adjacent mucosa (n = 45, p < 0.001) and correlates inversely with mRNA expression (n = 45, p = 0.056, r = −0.54). Treatments with 5-aza-2-deoxycytidine, a DNA methyltransferase inhibitor, and with two different histone deacetylase inhibitors, Trichostatin A or suberoylanilide hydroxamic acid, restored the expression of CaSR in several colon cancer cell lines, in a compound- and cell line-dependent manner. Inhibition of lysine-specific demethylase 1, to prevent demethylation of mono- and dimethylated H3K4, caused only modest increase of the CaSR expression.

Our results suggest that in colorectal tumours loss of the CaSR expression is caused partially by hypermethylation of its promoter and by deacetylation of lysine 9 on histone 3.

Bone Microarchitecture in Men with Osteoporotic Hip Fractures

U. Föger-Samwald, A. Alaghbandan, J. M. Patsch, D. Schanall, S. Salen, M. Moussavi, P. Pietschmann

1Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna; 2Department of Orthopaedics, St. Vincent Hospital Vienna; 3Department of Trauma Surgery, Danube Hospital, Vienna, Austria

Background Approximately one third of postmenopausal women have osteoporosis; nevertheless, also men suffer from this disorder and about one third of osteoporotic hip fractures worldwide occur in the male population. However, there is limited information about microstructural changes associated with osteoporotic hip fractures in men. The aim of this study was to investigate changes in trabecular bone structure in men with osteoporotic hip fractures.

Methods Femoral heads and adjacent bone tissue from 11 men with low-trauma hip fractures (mean age 82 ± 7 years) and consecutive surgical hip replacement were collected. Bone samples fromagematched men undergoing hip replacement due to osteoarthritis served as controls. Bone samples were taken from 4 different regions (central and subcortical region of the femoral head, central and subcortical region of the femoral neck). All samples were analyzed separately by static histomorphometry. The following parameters were evaluated: trabecular bone volume (BV/TV), marrow cavity volume (Ma/TV), bone surface density (BS/BV), trabecular number (TbN), trabecular thickness (TbTh), and trabecular separation (TbSp).

Results Major microarchitectural changes were seen in the subcortical region of the femoral neck. In the fracture group BV/TV and TbN were significantly decreased (BV/TV: 26.3 ± 2.2% versus 62.1 ± 13.6%, p = 0.001; TbN: 3.2 ± 0.2 mm² versus 4.7 ± 0.6 mm², p = 0.007), whereas TbSp and Ma/TV were significantly increased (TbSp: 249.8 ± 24.1 μm versus 114.2 ± 19.4 μm, p = 0.001; Ma/TV: 76.1 ± 2.7% versus 54.4 ± 5.4%, p = 0.006). In the 3 other regions analyzed no significant differences were detected for these parameters. For TbTh and BS/BV no significant differences were observed in all 4 regions.

Conclusion Changes in the trabecular structure associated with osteoporotic hip fractures in men are localized in the subcortical region of the femoral neck and are (as has been reported in women) characterized by decreased BV/TV and by loss of trabeculae. This information might help to identify persons at higher risk for osteoporotic hip fractures.

Effects of Growth Hormone Therapy on Bone Turnover and Bone Matrix Mineralization in Children with Chronic Kidney Disease

N. Fratzl-Zelman, K. Nawrot-Wawrzyniak, B. Misof, M. Patczyk-Tomaszewska, H. Żidło-Kowalska, P. Roschger, K. Klauszhofer

1Ludwig Boltzmann Institute of Osteopathy at Hauptsächl Hospital of WKG and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria; 2Department of Pediatrics and Nephrology, Medical University of Warsaw, Poland

Background and Methods A specific skeletal complication in children with CKD is growth impairment. The effects of recombinant human growth hormone (rhGH) therapy on bone turnover and bone material quality are not well understood. Bone matrix mineralization density distribution (BMDD) as assessed by quantitative back-scattered electron microscopy (qBEI) is an important determinant of bone material quality and reflects bone turnover (average tissue age) and mineralization kinetics of the individual bone packets of the sample.

We have evaluated a cohort of 20 paediatric patients (CKD stage 4: n = 2; end-stage renal disease treated by dialysis: n = 18). Bone histomorphometry was performed and all biopsies were classified according to the new TMV system.

Results Prior treatment, strong associations between bone matrix mineralization and bone turnover were found: the mean bone matrix mineralization was abnormally high while bone formation rates were low compared to reference data. After rhGH treatment, the mean height acquisition was about 8.5 cm, serum ALP levels and bone turnover indices were significantly increased compared to baseline, and bone matrix mineralization in cancellous and cortical compartments was significantly decreased towards normal range.

A striking exception was the case of an adolescent with difficulties to adhere to therapy, who developed severe hyperparathyroidism and osteitis fibrosa concomitantly with a witholy low bone mineralization.
Conclusion Our data show that bone turnover rate is a strong predictor of the bone matrix mineralization in young patients with CKD and growth deficiency. At baseline, our cohort had low bone turnover and increased bone matrix mineralization, indicating further normal mineralization kinetics in these patients with CKD. The data suggest that rGh treatment in children with CKD does not only increase height but also bone turnover, which appears beneficial for bone matrix mineralization.

Analysis of BMD, Hip Geometry, and Trabecular Bone Score in Relation to Body Composition and Biochemical Markers in Adult Females with Severe Anorexia Nervosa

J. Haschka¹, M. Patsch¹, R. Kocijan¹, D. Hans³, C. Muschitz², A. Zendeli¹, C. Bittighofer¹, A. Trubrich⁴, J. Wild⁴, H. Reisch⁴

¹VINFORCE Study Group, Medical Department II, St. Vincent Hospital, Austria; ²Leiden University Medical Center, Department of Endocrinology & Metabolic Diseases, Leiden, Netherlands

Purpose Anorexia nervosa (AN) is a psychiatric eating disorder associated with reduced body mass, estrogen deficiency, malnutrition, and amenorrhea. The aim of the study was to investigate differences in hip geometry (HSA) and spinal bone microarchitecture as measured indirectly by trabecular bone score (TBS) in relation to body composition in patients with AN. TBS, a new texture measure that can be applied to X-ray images and DXA, quantifies local variations in gray level and characterizes bone microstructure. HSA, derived from DXA, provides information about hip geometry and biomechanical strength.

Methods DXA scans of femoral neck, lumbar spine and body composition (lean body mass [kg], body fat percentage [%], BMC [kg]), and HSA (CSMI: cross-sectional moment of inertia, CSA: cross-sectional area) were assessed by IDXA (GE Lunar) in 34 patients with AN (23.5 ± 4.5 y, BMI 14.7 ± 1.3) and 26 controls (24.4 ± 2.5 y, BMI 23.5 ± 3.7). The raw data of spinal DXA (L1–L4) were extracted and analysed with TBS Insight software (v1.9, Medimaps SA, France). Serum parameter for bone formation (P1NP) and bone resorption (CTX), sclerostin levels (Scl), 25(OH)Vit. D, estradiol, and cortisol were assessed.

Results In patients with AN BMD was significantly decreased at all sites (femoral neck 0.850 ± 0.14 vs 1.068 ± 0.11; L1–L4 0.973 ± 0.15 vs 1.292 ± 0.15, p < 0.001). Consequently mean TBS spine was significantly lower in AN (1.35 ± 0.12 vs 1.56 ± 0.08, p < 0.001). CSMI (7.6 ± 1.8 vs 10.8 ± 2.7) and CSA (121.2 ± 21.7 vs 161.6 ± 19.7) were significantly lower in AN (p < 0.001 for both). Body composition showed significantly lower BMC (2.0 ± 0.3 vs 2.5 ± 0.5), lean body mass (32.7 ± 4.0 vs 42.6 ± 5.1), and body fat percentage (14.1 ± 8.0 vs 36.1 ± 5.2, p < 0.001 for all) in AN. In AN, lean body mass, BMC, and hip BMD correlated positively with CSMI and CSA. Patients with AN had significantly higher Scl (41.7 ± 17.7 vs 28.8 ± 11.9, p < 0.05) and CTX (0.767 ± 0.4 vs 0.446 ± 0.2, p < 0.001) levels, while there was no difference in P1NP and cortisol. Vit. D (26.7 ± 11.0 vs 32.9 ± 9.5) and estradiol (25.9 ± 25.6 vs 75.4 ± 81.1, p < 0.05 for both) were significantly lower in patients with AN.

Conclusion Apart from the expected significant decrease in body composition and BMD, our data suggest strong deteriorations of microstructure and bone geometry in young adults with AN. Moreover, high Scl levels, elevated bone resorption markers, but unchanged formation markers give evidence of an uncoupling in bone turnover.

Altered Material Properties in Sclerostin-Deficient Bone

N. Hassler¹, A. Roschger², P. Roschger³, S. Gamsjäger¹, I. Kramer², S. Lueger³, A. van Lierop³, R. van Bezooijen¹, K. Klaushofer¹, E. P. Paschalis¹, M. Kneissl¹, S. Papapoulos³

¹Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WKKG and AVUA Trauma Centre Medizing, 1st Medical Department, Hanusch Hospital Vienna, Austria; ²Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland; ³Leiden University Medical Center, Department of Endocrinology & Metabolic Diseases, Leiden, Netherlands

Authors have contributed equally and are listed in alphabetical order.

High bone mass induced by Sclerostin (Sost) deficiency is not associated with a prevalence of fragility fractures as in other sclerostin-deficient conditions. Beneficial alterations in bone material properties may be responsible for that. Thus, bone of Sost-KO mice (n = 9, 16 weeks old) and patients (young [4–16 yrs old], n = 4, and adults [24 and 43 yrs old], n = 2) with sclerosteosis was investigated by means of quantitative backscattered electron imaging and Raman microspectroscopy and compared to healthy bone. In Sost-KO mice the bone formed by osteoblasts of the endosteal compartment exhibited altered material properties, unlike the perilostal surfaces. Comparing bone tissue of same tissue ages (5–15 and 55–65 days) as defined by fluorescence labelling the average bone matrix mineralization was reduced (~1.9 %, p < 0.0001 and ~1.5 %, p < 0.05, respectively), and the relative proteoglycan content was significantly increased. In sclerosteosis patients, where only chips of compact bone without any fluorescence labelling were available, the bone matrix mineralization density distribution was shifted towards lower matrix mineralization, coupled with an increase in mineralization heterogeneity in the young population. The relative proteoglycan content was also increased in the bone samples of children.

The present study revealed altered bone material properties at the endocortical envelope in Sost-KO mice and also indications for alterations in sclerosteosis patients. We suggest that these alterations in bone material properties may contribute to the absence of fragility fractures in patients with sclerosteosis.

Consequences of the Overexpression of the Vitamin D-Degrading Enzyme CYP24A1 In Vivo and In Vitro

Medical University of Vienna, Austria

Low serum vitamin D level increases risk for colorectal cancer in humans. The vitamin D-degrading enzyme CYP24A1 is severely overexpressed in colorectal tumours further debilitating vitamin D metabolites. In the colon, vitamin D metabolites are thought to regulate proliferation, angiogenesis, apoptosis, and differentiation. Therefore, depletion of these metabolites reduces the anti-tumorigenic activities of vitamin D. Recently, we found strong correlations between the expression of the vitamin D-degrading enzyme CYP24A1 and proliferation markers. This led us to speculate that tumours with high CYP24A1 expression may have an increased proliferative potential. To investigate this, we stably transfected HT-29 cells (low basal CYP24A1 transcription) with a CYP24A1 overexpression vector. The cell line HT-29CYP24A1-GFP shows more than 20,000-fold higher mRNA expression of CYP24A1 and significantly increased protein expression. Both mRNA and protein expression can be further induced by vitamin D (1.25-D) treatments. To investigate the effect of CYP24A1 overexpression on tumour growth in vivo, we injected xenografts into male SCID mice. The animals received high or low vitamin D supplementation with either high or low soy protein. Soy contains high amounts of genistein, a CYP24A1 inhibitor. Overall, HT-29CYP24A1-GFP xenografts grew faster and penetrated skin earlier than control HT-29 xenografts. Soy-rich diet reduced tumour growth in control cells but not in HT-29CYP24A1-GFP xenografts. Our preliminary results suggest that a soy-rich diet slows xenograft growth.
Vitamin D and Osteocalcin as Modulators of the männlichen Steroidogenese

D. Hefer1, J. Münniker1, N. Hacker1, K. Hutc2, R. Zigeuner3, P. Stiegler1, H. Müller1, T. R. Pfeifer2, B. Obersier-Mietsch1
1Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin, 2Universitätsklinik für Urologie und 3Klinische Abteilung für Transplantationschirurgie, Universitätsklinik für Chirurgie, Medizinische Universität Graz, Österreich

Einleitung

Vitamin D (VD) ist ein vielseitiges Hormon und spielt neben seiner Funktion in der Kalzium-Homöostase u. a. in der Insulinsekretion und im Androgenstoffwechsel eine wichtige Rolle. Osteocalcin (OC), ein Peptidhormon, das in den Osteoblasten im Knochen gebildet wird und vorwiegend als Marker des Knochenaufbaus dient, scheint nach neuen Erkenntnissen in Zusammenhang mit Insulin-ausschüttung und männlicher Fertilität zu stehen.

Ziel

Die vorliegende Studie ist ein Auswurf der Hormone Vitamin D bzw. Osteocalcin auf die Geneexpression humaner Hodenzellen zu stehen.

Methoden

Für die Untersuchungen wird eine testikuläre Krebszellsline (Ntera 2/d1) herangezogen. Die Expression von Genen, die in den Androgenstoffwechsel involviert sind (Androgenrezeptor [AR], Aromatase [CYP19A1], 17β-Hydroxysteroid-Dehydrogenase [HSD17B1]), wird basal und nach Supplementation der o. g. Hormone in physiologischen Konzentrationen mittels quantitativer RT-PCR (TaQMan-Assays) analysiert.

Ergebnisse

Schlussfolgerung

Bone Microstructure, Density, and Geometry Are Affected in Patients with Rheumatoid Arthritis

R. Kocijan1,2, S. Finzel1, M. Engelbrecht1, K. Engelke1, J. Rech1, G. Schett1
1Department of Internal Medicine 3 and Institute of Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany; 2VINFORCE Study Group, Medical Department II, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Austria; 3Institute of Medical Physics, University of Erlangen, Germany

Objectives

Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by local and systemic bone loss. Proinflam- matory cytokines as well as antibodies directed against citrullinated proteins (ACPA) can stimulate osteoclast differentiation in RA. Therefore, RA is an independent risk factor for secondary osteoporosis and osteoporosis-related fractures. However, the impact of chronic inflammation as well as conventional and biological disease-modifying anti-rheumatic drugs (DMARDs) on bone structure, density, and geometry remains unclear.

Methods

We performed HR-pQCT (XtremeCT) measurements at the distal radius (DR) and the ultra-distal radius (UDR), close to the joint gap, in 90 patients with RA (60 female, 30 male). Data were compared to age- and gender-matched controls (CTRL, n = 70; 40 female, 30 male). Volumetric bone mineral density (vBMD), bone geometry, and bone microstructure including trabecular bone volume fraction (BV/TV), trabecular number (Tb.N, 1/mm), cortical thickness (Ct.Th, mm), and cortical porosity (Ct.Po, %) were assessed at the DR. Since cortex is too thin at the UDR, only trabecular parameters were analyzed.

Results

Patients in the RA group were comparable to CTRL regarding age (53.6 ± 12.8 vs. 52.3 ± 12.6 yrs), height, weight, and BMI. At the DR, trabecular (p = 0.005 and p < 0.001) and cortical BMD (p = 0.001 and p < 0.001) were significantly decreased in male and female patients with RA, respectively. Similar results for trabecular BMD were found for both sexes at the UDR. We found a decreased BV/TV at the DR and UDR, mainly caused by a decrease in trabecular number in female RA (p < 0.001 for both sites) and by trabecular thinning (p = 0.034 and p = 0.005) in male RA, respectively. Moreover, cortical thinning (p = 0.018 and p = 0.002) but not cortical porosity (p = 0.070 and p = 0.275) was common in male and female RA patients at the DR. Cortical perimeter was increased in male and female RA patients at both sites. These results were supported by a multi-regression analysis, showing a strong association between trabecular and cortical bone loss and “rheumatoid arthritis” as well as disease duration. Glucocorticoids (> 7.5 mg pred- nisolone daily) negatively influenced bone microstructure, whereas
low-dose glucocorticoids (< 5 mg prednisolone daily) did not influence bone quality or quantity. A strong influence of conventional and biological DMARDs on bone could not be demonstrated. **Conclusion** Both trabecular and cortical bone are severely affected in RA. The increase in cortical perimeter in RA reflects a compensatory mechanism to counteract cortical thinning and to restore bone strength. Our data suggest that bone quantity and quality are significantly decreased in the appendicular skeleton of RA patients at both periarticular and non-periarticular sites. This study was supported by the Bayerische Forschungsstiftung.

Datenmanagement und Plattformbildung für Osteoporose

L. Kussel1, P. Pietschmann2, H. Zeisler1
1Universität für Frauenheilkunde und 2Institut für Pathophysiologie und Allergieforschung, Medizinische Universität Wien, Österreich

Einleitung
Digitale Verwaltung und Management klinischer Daten wird zunehmend zur absoluten Anforderung an die moderne Medizin und medizinische Forschung. Sammlungen klinischer Fälle von Osteoporose stellen dabei aufgrund des heterogenen Krankheitsbildes eine besondere Herausforderung dar.

Materialien und Methoden

Vorstellung einer Web-basierten, osteoporose-spezifischen Datenbanklösung mit wissenschaftlichem Plattform-Charakter.

Resultat

Conclusio

Osteoporose-spezifisches internetbasiertes Datenmanagement mit einheitlicher Dokumentation schafft eine ideale Voraussetzung für Plattformbildung und effiziente wissenschaftliche Arbeit und Kooperation.

Micro-CT Analyses of Historical Osteomyelitic Bone Samples from the “Narrenturm” (NHM)

C. Lamm1, M. Dockner2, B. Pospisilchek2, B. Patzak2, M. Pretterklieber2, G. W. Weber1, P. Pietschmann1
1Department of Pathophysiology and Allergy Research, Medical University of Vienna; 2Department of Anthropology, University of Vienna; 3Collection of Anatomical Pathology in the “Madhouse Tower”, Museum of Natural History (NHM), Vienna; 4Department of Applied Anatomy, Medical University of Vienna, Austria

Introduction

Osteomyelitis is defined as an inflammation of the bone marrow mainly caused by bacteria such as staphylococcus aureus. It mainly affects long bones, e.g., femora, tibiae, and humeri. Recent micro-computed tomography (µCT) techniques offer the opportunity to investigate the microarchitecture of bone in great detail. Since there is no information on long bone microarchitecture in osteomyelitis, the aim of our study was to study historical bone samples with osteomyelitis by µCT.

Materials and Methods

We investigated 24 femora of 23 individuals with osteomyelitis derived from the Collection of Anatomical Pathology in the “Madhouse Tower”, NHM (mean age: 44 ± 19 years); 9 femora from the Department of Applied Anatomy of the Medical University of Vienna were studied as controls. Bone microstructure was assessed by µCT VISCOM X 8000 II with a minimal resolution of 18 µm.

Results

In the osteomyelitic femora most prominent alterations were seen in the cortical compartment, in 73% of the individuals with osteomyelitis cortical porosity occurred. In 64% trabecularisation of cortical bone was observed. 59% of the individuals showed cortical thinning. Remarkably, we also noticed microstructural changes in areas that did not show any pathology microscopically.

Conclusion

Osteomyelitis is associated with severe alterations of cortical bone structure typically observed in old age such as cortical porosity and cortical thinning.

Sturzrisiko und Reduktion

W. Lenhard
Abteilung für Orthopädie, Klinik Jesuitenschlössl, Rehazentrum für Neurologie und Orthopädie, Passau, Deutschland

Einleitung

Zunehmendes Alter ist mit steigendem Sturzrisiko verknüpft. In der Altersgruppe > 65 stürzt jeder zumindest einmal im Jahr, in der Altersgruppe > 80 sind es bereits 40 %. Sturz ist nicht gleich Sturz.

Material und Methode

- Grad 0: Keine sichtbaren Verletzungen
- Grad 1: Kleine Verletzung (Hämatom, Prellung etc.), die keiner ärztlichen Hilfe bedürfen
- Grad 2: Mäßige Verletzungen (Rissquetsch-, Platzwunde etc.), die ärztlicher Hilfe bedürfen
- Grad 3: Frakturen und Luxationen

Ergebnisse

Overlapping and Follow-Up of Alendronate to Teriparatide Results in Continuing Volumetric Bone Mass Increase Measured by Quantitative Computed Tomography

C. Muschitz1, R. Kocjan1, W. Schima1, J. Haschka1, A. Zendeli1, A. Fahrleitner-Pammer1, H. Resch1
1The Vinforce Study Group, Medical Department II, and 2Department of Radiology, St. Vincent Hospital Vienna, Academic Teaching Hospital Medical University of Vienna; 3Division of Endocrinology and Metabolism, Medical University of Graz, Austria

Purpose After 9 months of teriparatide (TPTD) treatment the combination of alendronate (ALN) and TPTD for the consecutive 9 months results in enhanced bone mineral density (BMD) gain when compared with 18 months of TPTD monotherapy. Use of raloxifene (RAL) instead of ALN was less advantageous. During a subsequent 12-month maintenance therapy, hip BMD only increased in the ALN group. Our aim was to investigate changes of cortical and trabecular bone by quantitative computed tomography (QCT).

Methods 125 postmenopausal women (mean age 71.7 ± 8.5 ys, 91.5 % fracture prevalence, 95.7 % prior antiresorptive treatment > 2 yrs) were randomized after 9 months of TPTD treatment into 3 open-label groups for another 9 months: ALN (70 mg/wk, 41 pts) or RAL (60 mg/day, 37 pts) added to TPTD treatment or TPTD monotherapy/CA+Vit D group (47 pts). After TPTD termination, patients were maintained on their respective treatment regime for another 12 months. All subjects received 1 g calcium/800 IU vitamin D daily. Trabecular bone in 2nd lumbar vertebra (L2), cortical and trabecular bone in total hip and femoral neck were measured at randomization, end of TPTD, and end of maintenance by QCT (Siemens Somatom Definition AS+).

Results L2 bone volume changed by (mean % ± SD) 12.1 ± 4.5, 14.6 ± 8.9, and 7.2 ± 7 during combination and 21.9 ± 8.3, 23.6 ± 10, and –3.9 ± 5.7 % (p < 0.001 for all) at the end of maintenance treatment for the ALN, RAL, and CA+Vit D groups, respectively. CA+Vit D group was inferior to the other groups at both time points (p < 0.01). The corresponding changes of trabecular bone in the total hip were 10.7 ± 4.4, 5.1 ± 2.3, and 4.8 ± 2.6 as well as 16.7 ± 4.4, 8 ± 3.2 (p < 0.001 for all), and –0.4 ± 4 % (n.s.), respectively. Changes in both time points were superior in the ALN group. The increase of the RAL was greater than of the CA+Vit D group at the end of the maintenance (p = 0.02). In contrast, cortical bone in the total hip changed by 6.6 ± 2.2 (p < 0.001), –1.7 ± 5.8 (p = 0.01), and 2.8 ± 3.1 (p = 0.002) and 13.8 ± 2.9, –3.9 ± 6 (p < 0.001 both), and 0.7 ± 3.3 % (n.s.), respectively. In both intervals, cortical bone increased in the ALN group significantly more than in the other groups (p < 0.001). The decrease observed in the RAL group was significantly different from changes in the CA+Vit D group.

Conclusion Continuation of ALN after its addition to the second 9 months of an 18-month TPTD treatment cycle resulted in a robust increase especially in cortical bone of the hip in severe postmenopausal osteoporosis.

Intravenous Ibandronate Increases Femoral and Ver- tebral Strength Measured by Finite Element Analysis in Male Patients with Idiopathic Osteoporosis and Fracture Fragilities

C. Muschitz1, D. Pahr1, M. Kinzl2, B. Luier3, A. Zendeli1, R. Kocjan1, J. Haschka1, W. Schima1, H. Resch1
1The Vinforce Study Group, Medical Department II, St. Vincent Hospital Vienna, Academic Teaching Hospital Medical University of Vienna; 2Institute of Lightweight Design and Structural Biomechanics, University of Technology, Vienna; 3Department of Radiology, St. Vincent Hospital Vienna, Austria

Purpose Male idiopathic osteoporosis (MIO) is a metabolic bone disease characterized by low BMD, micro structural alterations, and reduced mineralization of cortical structures resulting in increased fracture risk in otherwise healthy men. The evidence of antiresorp-

Metabolic Changes After Bariatric Surgery – Baseline and Short-Term Follow-Up Results from the BABS Study

C. Muschitz1, N. Tykalsky3, W. Lechner1, C. Marterer1, A. Rabharbria1, S. Kapiotis3, F. Lomoschitz1, W. Schima4, H. Resch1, A. Klaus2
1The Vinforce Study Group, Medical Department II, 2Department of Surgery, 3Central Laboratory, and 4Department of Radiology, St. Vincent Hospital Vienna, Austria

Introduction An increasing number of obese patients are subject to laparoscopic gastric bypass or sleeve surgery, which leads to rapid weight loss. Less data is available on baseline and follow-up changes of body composition or metabolic bone alterations due to the modification in eating behaviour and intestinal resorption caused by surgery. The aim of this prospective study is the investigation of baseline values of female and male patients prior to surgery for a pre-planned period of 2 years.

Material and Methods Prior to surgery all patients had a complete clinical work-up including medical history and verification of the eligibility criteria by the Austrian health authorities. Bone mineral density (BMD) and total body composition (% fat mass, lean mass) were measured by dual-energy X-ray absorptiometry (GE Lunar iDXA). Fasting serum levels of intact amino propeptide of type 1 procollagen (PINP) and type 1 collagen cross-linked C-telopeptide (CTX), as well as intact parathyroid hormone (iPTH) and 25-OH vitamin D were measured quarterly. Baseline and 6-month follow-up data are presented.

Results Between February 2012 and March 2013 a total of 144 (102 female and 42 male) patients were assigned to bariatric surgery. At baseline mean age was 43.3 ± 13.4 years; mean body weight was
127.6 ± 25.1 kg (BMI 44.8 ± 8.7) with a mean percentage of body fat of 50.4 ± 5.7 %, a mean lean mass of 58.6 ± 10.7 kg, and a total body BMD of 1.27 ± 0.13 g/cm². BMD at femoral neck (1.13 ± 0.18 g/cm²) and lumbar spine (1.23 ± 0.15 g/cm²) were within normal range, iPTH levels were close to the upper limit of normal (71.2 ± 35.4 ng/ml) whereas 25-OH vitamin D levels were in insufficient range (18.4 ± 8.9 ng/ml). PINP and CTX values did not show any signs of accelerated bone metabolism.

Six months after surgery, the mean percentage of body fat significantly decreased to 35.5 ± 11.4 % (p < 0.01, Δ 29.4 %), lean mass was reduced to 48.2 ± 4.4 kg (p < 0.05, Δ 17.7 %), but total body BMD did not change (1.22 ± 0.13 g/cm², p = n.s.). At the femoral neck there was a significant decline in BMD (1.00 ± 0.14 g/cm², p < 0.05, Δ 29.4 %), lean mass significantly decreased to 35.5 ± 11.4 % (p < 0.01, Δ 29.4 %), BMD at femoral neck (1.13 ± 0.18 g/cm²) and lumbar spine (1.23 ± 0.15 g/cm²) were within normal range.

Conclusions We conclude that bariatric surgery leads to a rapid and early reduction of body fat and lean mass after 6 months of observation. Total body BMD does not seem to be susceptible to these early changes and vitamin D deficiency is ubiquitous. The decline in hip BMD as a weight-bearing bone site can partly be explained by the body mass changes, but must be subject of further and prolonged investigation.

Do Dietary Protein Amount, Source of Protein, High-Intensity Exercise, and Anabolic Androgenic Steroid Administration Affect Bone Microarchitecture in Rats?

E. Nebot1,2, V. A. Aparicio1, U. Foeger-Samwald2, K. Wahl2, D. Camiletti-Moiron1, R. Martínez1, G. Kapavelou1, J. M. Porres1, M. López-Jurado1, P. Aranda1, P. Pitschmann2

1Department of Physiology, School of Pharmacy and School of Sports Sciences, and Institute of Nutrition and Food Technology. University of Granada, Spain; 2Department of Pathophysiology and Allergy Research, University of Vienna, Austria.

Background The amount and source of dietary proteins, high-intensity exercise (HIE), and anabolic androgenic steroid (AAS) administration may affect bone status.

Objective To analyze the effects of the dietary protein amount and source of protein, HIE, and AAS on bone trabecular microarchitecture in rats.

Material and Method Adult male Wistar rats were randomly distributed into 8 experimental groups corresponding to groups fed normal-protein (NP) or high-protein (HP), soy protein or whey protein, trained or sedentary, with or without AAS administration. Diets were based on commercial hydrolyzates of whey or soy protein. A 12% protein content was chosen for the NP diet groups. The exercise groups carried out a training protocol previously described by Aparicio et al. [1]. AAS administration consisted of weekly intramuscular injections of 10 mg/kg body weight of nandrolone decanoate. Adult male Wistar rats were randomly distributed into 8 experimental groups corresponding to groups fed normal-protein (NP) or high-protein (HP), soy protein or whey protein, trained or sedentary, with or without AAS administration.

Results Trabecular thickness was higher in the NP group compared to the control groups (552.4 ± 48.6 vs 426.2 ± 24.9 mm), AppBMD was significantly higher in the AAS groups compared to the NP and HIE groups, whereas 25-OH vitamin D levels were in insufficient range (18.4 ± 8.9 ng/ml). PINP and CTX values did not show any signs of accelerated bone metabolism.

Conclusions We conclude that bariatric surgery leads to a rapid and early reduction of body fat and lean mass after 6 months of observation. Total body BMD does not seem to be susceptible to these early changes and vitamin D deficiency is ubiquitous. The decline in hip BMD as a weight-bearing bone site can partly be explained by the body mass changes, but must be subject of further and prolonged investigation.
von 2–6 Jahren retrospektiv analysiert. Eine Therapie mit Vitamin D wurde in diesem Zeitraum nicht routinemäßig durchgeführt.

Schlussfolgerungen Aus den erhobenen Daten schließen wir, dass ein Vitamin-D-Mangel nach Nierentransplantation häufig auftritt und es im Verlauf nach Transplantation zu keiner spontanen Verbesserung kommt.

Computer-Assisted Morphological Sex Estimation on Crania

1Department of Radiology, General Hospital of Vienna; 2Center of Anatomy and Cell Biology, 3Department of Forensic Medicine, Medical University of Vienna, Austria

Objective The aim was to develop a computer-assisted age-dependent sex estimation scheme of cranial bones for improving visual assessments.

Material and Methods A computer-assisted surface analysis scheme for assessing the bony relief was developed on 5 skulls (3 males, 2 females) basing on Koenderink’s Shape Index. The feasibility of this technique was tested on 24 skulls of European individuals (12 males, mean age 45.58 ± 16.26 years, and 12 females, mean age 46.17 ± 18.31 years) from local historical collections. Scans were performed with a 64-row multidetector CT (pitch = 0.64) and modelled with AMIRA 5.4. Concavities and convexities were measured with the Shape Index on preselected regions of the frontal, zygomatic, petrous, occipital bones, and the mandible.

Results Employing the Shape Index on refined post-processed CT data sets with additional regression analysis provides a new computer-assisted morphological sex estimation scheme. The specificity was 94.43 % and the sensitivity was 88.1 %, while the application of the Knussmann scheme had a specificity of 36.9 % and a sensitivity of 73.8 %.

Conclusion CAMSAS is a feasible computer-assisted analysis tool for improving the subjective age-dependent sex estimation of cranial bones.

Galectin-3 is a Component of Circulating Microvesicles and Boosts Osteogenic Differentiation of Mesenchymal Stem Cells

S. Weilner1,2, E. Schraml1, V. Keider1, H. Redl1, P. Pitschmann1, R. Grillari-Voglauer1, J. Grillari2

1Department of Biotechnology, BOKU – University of Natural Resources and Life Sciences Vienna; 2Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA, Vienna; 3Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria

Introduction Aging is a complex process that results in the decline of physiologic functions due to accumulation of damage in cells and tissues as well as in reduced repair capacities. The regenerative power of stem and progenitor cells has been found to decline with age and to be influenced by the systemic environment. In particular osteogenic differentiation capacity of mesenchymal stem cells (MSCs) has been shown to decrease with age, thereby contributing to slowed down bone formation that might contribute to osteopenia or osteoporosis. Here, we set out to identify circulating factors of the aged systemic environment that influence the functionality of adult stem cells.

Results While searching for systemic factors which are deregulated in old age and influence osteogenic differentiation capacity of mesenchymal stem cells (MSCs), Galectin-3 was found. Overexpression of Galectin-3 was shown to boost osteogenic differentiation capacity of MSCs while reducing its expression by small interfering RNA inhibited osteogenesis. We could demonstrate that Galectin-3 is secreted within microvesicles (MV) of endothelial cells in vivo. Furthermore a possible genetic transfer of endothelial microvesicular Galectin-3 to MSCs was confirmed, since coinucitation of GFP-containing endothelial MVs and MSCs resulted in an uptake of MVs via endocytosis. The fact that endothelial cells line the blood vessels supports the notion that secretion of Galectin-3 within vesicles may also occur in vivo. This was proven by analysing human plasma samples of donors older than 55 and younger than 25 years. Ex-vivo derived circulating MVs isolated from human plasma of young individuals exhibited elevated Galectin-3 levels and boosted osteogenic differentiation capacity of MSCs compared to MVs of elderly donors.

Conclusion Summarizing, our data suggest that the composition of circulating microvesicles changes with age and that they deliver factors impacting on osteogenic differentiation. Amongst other factors microvesicular Galectin-3 was shown to enhance osteogenesis and to be enriched within microvesicles isolated from young human plasma. Furthermore endothelial cells were identified as a potential source for circulating microvesicles containing Galectin-3.
Autorenindex
(Erstautoren)

A
Aggarwal A. ... 3

B
Blouin S. ... 3
Breitwieser A. ... 3

C
Cejka D. ... 4

D
Dovjak P. ... 4

E
Eigentler A. ... 4

F
Fetahu I. S. ... 5
Föger-Samwald U. ... 5
Fratzl-Zelman N. ... 5

H
Haschka J. ... 6
Hassler N/Roschger A. ... 6
Höbaus J. ... 6
Hofer D. ... 7
Hummel D. M. ... 7

K
Kocijan R. ... 7
Kuessel L. ... 8

L
Lamm C. ... 8
Lenhard W. ... 8

M
Muschitz C. ... 10 (3×)

N
Nebot E. ... 11

T
Tennakoon S. ... 11
Thiem U. ... 11

V
Vlcek A. ... 12

W
Weilner S. ... 12

Herausgeber: H. Resch, Wien

Schriftleitung (Subject Editors): Orthopädie
M. Friedrich, Wien
K. Knahr, Wien

Orthopädie
Muschitz C. ... 10 (3×)

Osteologie
P. Bernecker, Wien
H. P. Dimai, Graz
H. Dobug, Graz
P. Preitschmann, Wien
E. Preisinger, Wien

Rheumatologie
M. Herold, Innsbruck

Wissenschaftlicher Beirat:
M. Aringer, Dresden
H.-P. Brezinsek, Graz
J. Breitl, Wien
Th. Cermak, Wien
U. Dorn, Salzburg
A. Falkenbach, Bad Ischl
F. H. Fischl, Wien
R. W. Gasser, Innsbruck
S. Grampp, Wien
J. Hochreiter, Linz
O. Hoffmann, Wien
J. Kirchheimer, Villach
K. Klaushofer, Wien
G. Leb, Graz
B. Leeb, Stockerau
W. Marktl, Wien
E. M. Mur, Innsbruck
M. Ogon, Wien
M. Peterlik, Wien
J. D. Ringe, Levenkussen
Th. Rustler, Wien
St. Scharla, Bad Reichenhall
M. Schirmer, Klagenfurt
M. Shechter, Tel Hashomer
R. Smolat, Wien
J. J. Stepan, Prag
J. Wendlova, Bratislava
J. Zaizgorik, Baden
B. Zirn, Bad Radkersburg
Mitteilungen aus der Redaktion

Besuchen Sie unsere
zeitschriftenübergreifende Datenbank

☑ Bilddatenbank ☑ Artikeldatenbank ☑ Fallberichte

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.

Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.

Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung