Estetrol, a Fetal Steroid for the Treatment of Adults
Coelingh Bennink HJT, Foidart J-M

J. Reproduktionsmed. Endocrinol 2015; 12 (4), 399-403

www.kup.at/repromedizin
Online-Datenbank mit Autoren- und Stichwortsuche

Indexed in EMBASE/Excerpta Medica/Scopus
Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz
Estetrol, a Fetal Steroid for the Treatment of Adults

H. J. T. Coelingh Bennink, J.-M. Foidart
on behalf of Pantarhei Bioscience, the Netherlands and Mithra Pharmaceuticals, Belgium

Estetrol (E4) is a natural fetal estrogen. This steroid molecule has been discovered in 1965 by the group of Egon Diczfalusy at the Karolinska Institute in Sweden and as a drug for human use in 2001 by the group of Herjan Coelingh Bennink at Pantarhei Bioscience in the Netherlands. Estetrol is structurally closely related to the predominant natural estrogens estron (E1), estradiol (E2) and estriol (E3), but with a number of different and potentially favorable features.

In comparison to E2, E4 displays much higher bioavailability upon oral administration and its elimination is considerably slower. Moreover, E4 is a metabolic endproduct and not metabolized into other estrogenic metabolites as happens after oral intake of E2. Consequently, stable therapeutic blood concentrations are rapidly achieved upon oral administration. In vitro E4 has been shown to interact exclusively with the estrogen receptors with some preference for the alpha receptor. Estetrol interacts minimally with liver function and steroid- and drug-metabolizing liver enzymes, suggesting among others less interference with hemostasis compared to other estrogens and potentially a lower risk of venous thromboembolism (VTE). These features indicate the particular feasibility and anticipated safety of E4 as an oral therapy in a once-daily dosing regimen.

Data from preclinical pharmacology studies support the safe use of E4 in humans and suggest therapeutic effects such as menopausal hormone treatment (MHT) of vasomotor symptoms (VMS) and vulvovaginal atrophy (VVA), prevention of osteoporosis, as well as application in contraceptive regimens. Estetrol antagonized E2 in in vitro models and prevented and inhibited growth of mammary tumors in an experimental rat model, suggesting a more breast-friendly profile compared to other estrogens and suitability of E4 as estrogen add-back treatment during anti-hormonal endocrine therapy of breast cancer, endometriosis and prostate cancer.

After 28-days daily oral administration of 2, 10, 20, or 40 mg to postmenopausal women, E4 has been shown to reduce the occurrence of VMS, to reverse the menopause-induced VVA and to exert bone-preserving changes by decreasing bone turnover, especially bone-resorption, suggesting positive bone formation. Endometrial proliferation, to an extent similar to 2 mg E2-valerate (E2V), was found at E4 doses of 10 mg/day. Estetrol was safe and had minimal effects on the synthesis of lipoproteins, SHBG and parameters of hemostasis, supporting the favorable profile with respect to VTE. At present dose-finding studies with E4 are prepared for the treatment of VMS and VWA.

Estetrol at a daily oral dose of 15 or 20 mg has been shown to be suitable as the estrogen component of combined oral contraceptives in a full phase II development program in collaboration with Jean-Michel Foidart in Belgium, demonstrating excellent efficacy, safety and cycle control, while minimally interfering with a number of metabolic parameters. Further phase III development of the oral contraceptive application of E4 will be performed by Mithra Pharmaceuticals in Liège, Belgium. J Reproduktionsmed Endokrinol_Online 2015; (4): 399–401.

Key words: Estetrol, E4, natural fetal estrogen, contraception, VMS, VVA, add-back treatment

Introduction

The estrogen Estetrol (E4) is produced in large quantities by the fetal liver during human pregnancy only. The molecule was discovered in 1965 at the Karolinska Institute in Stockholm [1]. Estetrol differs from other natural estrogens by an additional alpha-hydroxy (OH) group at position 15 of the molecule. It has been demonstrated that this minor structural difference has important implications, since this single additional OH group as compared to estril (E2) extends the half-life of the molecule. It has been demonstrated that this minor structural difference has important implications, since this single additional OH group as compared to estril (E2) extends the half-life of the molecule from 10 minutes for E2 to 20–28 hours for E4 [2]. The half-life of E4 is also much longer than those of other natural estrogens, including natural 17β-estradiol (E2) and micronized E2, for which half-lives of 2–3 hours have been reported respectively. In addition, E4 is more efficiently absorbed than E2 upon oral administration, as it is much less subject to pre-systemic and first-pass metabolism. These features of E4 are important prerequisites for the development of a once-a-day oral drug. Being a natural estrogen excreted abundantly in the urine of pregnant women, the development of a drug containing E4 is not expected to carry additional environmental risks.

Preclinical Development

Pantarhei Bioscience has discovered that E4 is suitable as a drug for human use. Pantarhei first demonstrated that E4 is orally bioavailable in the rat with a remarkably long elimination half-life for the rat of 2–3 hours [3]. Subsequently the pharmacological profile of E4 was characterized in detail in a number of studies. In these studies, E4 was administered orally and compared to oral ethinyl estradiol (EE), a synthetic estrogen. Comparison with E2 and E4 was not feasible given the rapid deactivation of these natural estrogens by the rat liver. The results of Pantarhei’s pharmacological studies indicate that E4 acts as an estrogen on the vagina [3], the uterus [3] and bone [4]. Estetrol shows limited interaction with the liver, both kinetically and dynamically [5]. Furthermore, E4 was found to suppress the naloxone-induced tail skin temperature increase, an experimental model of hot flushes [6], and to inhibit ovulation [7]. Estetrol has a vasorelaxing effect on isolated rat arteries [8]. The effect on breast tumor tissue is summarized later in this paper.

In in vitro studies, Pantarhei has demonstrated that E4 is capable of binding to both ER-alpha as well as ER-beta, with a four- to fivefold preference for ER-alpha. Estetrol displayed a relatively low affinity compared to EE and E2, but E4 did not bind to other steroid receptors and to a panel of 130 other drug targets [5].

Metabolism of E4 in human liver cells was found to be slow. Importantly, and in agreement with historical isotope studies carried out in the early seventies, no active metabolites of E4 have been detected to date, and E4 is excreted in an inactive form by the liver and kidney following conjugation to sulphate and/or glucuronide [5]. In this respect E4 substantially differs from E2, which after oral administration is extensively metabolized, predominantly into estrone (E1) and estrone sulphate (E1S), as well as into a large
number of other E1- and E2-derived metabolites [9].

As expected in view of the high levels of E4 during human pregnancy, E4 seems to be very safe. In animal pharmacology studies, in which doses of up to 10 mg/kg/day were used for four weeks, E4 did not cause any relevant side effect. The safety profile of E4 was further confirmed in a number of studies addressing the interaction of E4 with human hepatocytes [5], which is of particular significance given the known and well-documented side effects and interactions of estrogens on liver function. Contrary to EE and E2, E4 did not increase the synthesis of Sex Hormone Binding Globulin (SHBG) and did not change the activity of the five most relevant Cytochrome P-450-related liver enzymes [5]. Furthermore, and different from other estrogens, E4 appeared not to bind to SHBG [10].

Extensive information on the history and the preclinical and clinical profile of E4 is available in several review papers [11–14] and most of the pharmacological studies performed by Pantarhei have been published in Supplement I of the journal Climacteric in 2008.

Toxicology

A complete toxicology program was performed in rat and monkey. The results showed that the toxicology of E4 is largely determined by its estrogenic action, leading to exaggerated pharmacological responses at excessively high exposures. No specific toxicity of E4 has been observed.

Clinical Development Phase I/IIA

A single rising dose phase IIA study has been performed in healthy post-menopausal women. Estetrol showed high and dose-proportional oral bioavailability with a long elimination half-life of 28 hours [2], thereby confirming its potential as an oral therapeutic. A dose-dependent peak was found to occur within 15 to 30 minutes after oral administration, which was followed by a sharp decline of the E4 blood level and a secondary rise and slow elimination of E4 thereafter, suggesting gastro-intestinal recirculation. No side effects were observed.

Pharmacokinetic simulations have shown that the 24-hour exposure of the human fetus to E4 at term pregnancy equals a daily human oral dose of 50–55 mg E4, suggesting that such a dose may be expected to be safe in the human.

A multiple rising dose phase IB/IIA study with E4 was performed in healthy postmenopausal women to evaluate safety, pharmacokinetics and pharmacodynamic parameters. Doses of 2, 10, 20 and 40 mg E4 were evaluated after daily oral administration for 28 days and the lowest 2 mg dose of E4 was compared head-to-head with 2 mg estradiol-valerate (E2V).

Estetrol at an oral dose of 10 mg/day for a short period of 28 days was shown to be effective in reducing (~40%) the frequency of hot flushes (HF) in women suffering from such complaints. Estetrol appeared somewhat more effective than E2V 2 mg/day. Full evaluation of the effect of E4 for vasomotor symptoms (VMS) requires treatment periods of at least 12 weeks.

Vaginal cytology revealed dose-dependent estrogenic effects (vaginal maturation), with a dose of 2 mg E4 per day E4 showing similar effects as E2V 2 mg/day. In the case of vulvovaginal atrophy (VVA) the full estrogenic effect of E4 was obtained after 4 weeks treatment already.

Ultrasound measurement of endometrial thickness did not show an effect of E4 at 2 mg/day, in contrast to E2V 2 mg/day and E4 10 mg/day. Biopsies taken from subjects displaying a >50% increase in endometrial thickness revealed the expected proliferative changes. This data suggest that low dose oral E4 treatment of VVA may not require endometrial progestin protection, but higher doses of E4 will require a progestin. To avoid the increased breast cancer risk related to the use of oral progestins, higher doses of E4 should preferably be combined with an intra-uterine levonorgestrel-releasing intra-uterine device (IUD) or with the progestin dydrogesterone, which is the progestin closest to natural progesterone.

Estetrol was associated with a dose-dependent decrease in the levels of osteocalcin and type I collagen telopeptide (CTX-I), parameters of bone formation and bone resorption respectively. Daily oral doses of 10 mg E4 decreased levels of CTX-I to a similar extent as E2V 2 mg/day, whereas the decrease of osteocalcin with E4 was much less, suggesting a net effect and positive bone formation. This may qualify E4 not only for prevention, but also for treatment of osteoporosis.

Estetrol in the oral dose range of 2–10 mg/day for a period of 28 days had minimal effects on liver-protein synthesis. At 2.0 mg/day no effect on SHBG was observed, while at 10 mg/day similar effects as induced by 2.0 mg/day E2V were observed. E4 did not affect the synthesis of triglycerides, in contrast to E2V, and was furthermore associated with no changes or small decreases in LDL-cholesterol (considered favorable) and total cholesterol, a small and favorable increase in HDL-cholesterol and a resulting small decrease in the ratio cholesterol/HDL-cholesterol. Hemostatic factors and activities, including F1+2, tPA and nAPCr, were all minimally influenced, suggesting a limited effect on the risk of VTE.

No serious adverse events occurred at any E4 dose, and no significant changes were observed in vital signs, body weight, physical examination or ECG-readings either.

Estetrol may be suitable as the estrogen in combined oral contraceptives (COCs), for the treatment of menopausal symptoms, for prevention of osteoporosis and for estrogen add-back therapy during treatment with aromatase inhibitors and tamoxifen in women with breast cancer and in men with prostate cancer treated with GnRH analogues.

Combined Oral Contraception (COC)

A complete phase II clinical development has been performed for oral contraception. In summary, E4 inhibits ovulation effectively when combined with a standard COC dose of a progestin [15]. Estetrol COCs have better cycle control than the E2/dienogest comparator. Its safety profile is favorable in phase I and phase II clinical trials. No relevant side effects have been observed in more than 300 women taking 15 or 20 mg E4 for six CC0 cycles in combination with a progestin.
Estetrol has significantly less effect on liver [16] and hemostasis parameters compared to EE and E2, whatever the progestin used in the combination, suggesting a lower risk of VTE compared to other COCs. Estetrol seems a more breast-friendly estrogen, since it exhibits estrogen-antagonistic effects in preclinical and clinical studies, especially in the presence of E2. Moreover, in contrast to orally administered E2, E4 does not yield a large pool of E1S, which constitutes a potential source of unwanted E2-resynthesis in the breast.

Menopausal Hormone Therapy (MHT)

According to the present standard of care for MHT, Pantarhei has focused on oral E4 treatment of early post-menopausal women with moderate to serious complaints due to estrogen deficiency such as hot flushes and sweatings, urogenital atrophy, dyspareunia caused by vaginal dryness, arthralgia, loss of bone mass and an increased risk of fractures and decreasing cognition.

Major clinical advantages of E4 in MHT compared to presently used estrogens are a lower incidence of side effects and lower risks of VTE and gallbladder disease. In addition the estrogen-antagonistic effect of E4 on the breast may result in a better safety profile in relation to breast cancer (BC).

Since the oral synthetic progestins seem to be more important than the estrogens for the risk to develop BC, the objective is to develop MHT drugs without addition of a progestin. This will be achieved by developing a low dose of oral E4 for VVA that does not stimulate the endometrium and therefore does not require addition of a progestin. For VMS a higher dose of oral E4 may be required, that will induce endometrial proliferation. To protect the endometrium and to avoid oral progestins and their increased BC risk, an intra-uterine levonorgestrel-releasing IUD is preferred.

Vasomotor Symptoms (VMS)

The therapeutic potential of E4 for the treatment of VMS is supported by Figures 1 and 2.

Vulvovaginal Atrophy (VVA)

The therapeutic potential of E4 for the treatment of VVA is supported by Figure 3 and Table 1.

Add-back Treatment

The terminology “add-back treatment” is used for adding back an estrogen after complete pharmacological suppression of endogenous estrogen synthesis by anti-estrogenic treatment of diseases such as breast and prostate cancer and serious
Estetrol

endometriosis. Since the side effects of removing estrogens are often unacceptable and interfere with compliance to the anti-estrogenic drugs, adding back an estrogen at a low dose has been introduced as a solution for this problem. Actually one may consider add-back treatment as a special type of MHT.

As Pantarhei has demonstrated in pharmacological and clinical studies that E₄ acts as an estrogen agonist on vagina [3], bone [4] and brain [6], whereas E₄ has estrogen-antagonistic effects on breast tumor tissue (see below), the mixed agonistic/antagonistic profile of E₄ seems highly attractive for its use as estrogen add-back treatment in combination with anti-estrogenic treatments such as aromatase inhibitors, tamoxifen and GnRH analogues.

Preclinical Studies related to Breast Cancer

During the pharmacological profiling of E₄ in human breast cancer (BC) cell lines and in the DMBA rat model, Pantarhei has demonstrated that E₄ can act as an estrogen antagonist in breast tumor tissue.

The estrogen antagonism of E₄ has been confirmed in in vitro models by the groups of Gompel in Paris, Simoncini and Genazzani in Pisa and Greene in Chicago.

In three separate experiments in the DMBA animal model, Pantarhei has shown that E₄ can dose-dependently prevent and treat breast tumors [17, 18]. Figure 4 shows data from the DMBA treatment study demonstrating that E₄ at the highest dose (10 mg/kg) removes breast tumors as effectively as OVX. Even when this effect would have been obtained by complete suppression of ovarian function and extinction of E₂ only, it shows that E₄ at a high dose does not promote tumor growth. However it is more likely that the effect of E₄ at this dose is a cytotoxic effect, also known from other estrogens such as EE, E₂ and DES at high doses. A major difference with these other estrogens is the expected superior tolerability of E₄ at higher doses, allowing the clinical use of E₄ at such high dose levels.

Very recently the group of Foidart in Liège has demonstrated that E₄ is acting as an estrogen via the genomic pathway, whereas it acts as an anti-estrogen via the non-genomic pathway [19]. This unique combination of properties classifies E₄ as the first known natural SERM (selective estrogen receptor modulator) and explains why in preclinical and clinical studies E₄ exhibits anti-estrogenic effects on breast cancer. It implies that E₄ might be safer for the breast than other estrogens. This, in combination with the liver-friendly profile of E₄ and its very favorable safety profile, suggests that E₄ containing new drugs are expected to exhibit a very beneficial benefit-risk ratio.

Table 1.

<table>
<thead>
<tr>
<th>Parabasal (%)</th>
<th>Intermediate (%)</th>
<th>Superficial (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₂-val 2 mg</td>
<td>0 (0–3)</td>
<td>74 (51–92)</td>
</tr>
<tr>
<td>E₄ 2 mg</td>
<td>2 (0–15)</td>
<td>80 (53–94)</td>
</tr>
<tr>
<td>E₄ 10 mg</td>
<td>8 (0–17)</td>
<td>45 (23–78)</td>
</tr>
<tr>
<td>E₄ 20 mg</td>
<td>0 (0)</td>
<td>60 (17–88)</td>
</tr>
</tbody>
</table>

- **Figure 3.** E₄ induces cornification of the vaginal epithelium in ovariectomised rat with all doses tested. Lower doses are also effective, but require more time to achieve the full effect. (© Pantarhei Bioscience).

- **Figure 4.** The therapeutic potential of E₄ to inhibit growth of pre-existing mammary tumors was investigated in the DMBA rat model. Eight weeks after tumor induction, animals that had developed palpable mammary tumors were either ovariectomized (OVX) or treated orally with a vehicle (saline administration only), tamoxifene (TAM), or different doses of E₄ (1 mg, 3 mg and 10 mg, all per kg) daily during four weeks. The number of palpable mammary tumors before (“Baseline”) and after (“Treatment Week 4”) four weeks of treatment was compared. Standard errors of the mean are indicated. A significant disappearance of mammary tumors was observed after ovariectomy and dose-dependently after E₄ treatment. With the dose of TAM used (1 mg/kg) no increase or decrease was observed, but higher doses of TAM may be effective. (© Pantarhei Bioscience).
Clinical Study in Women with Breast Cancer
A prospective, double-blind, placebo-controlled, randomised, 14 days, pre-operative, neo-adjuvant study was performed in 15 pre- and 15 postmenopausal women with estrogen-receptor positive early BC in the “Vienna General Hospital”, Austria. Results have been published recently [20] and showed that E2 had a significant pro-apoptotic effect on tumor tissue while Ki67 expression remained unchanged. Estetrol increased SHBG significantly thereby reducing the concentrations of bioavailable E2. FSH levels decreased in postmenopausal women only and LH levels remained unchanged. Systemic IGF-1 levels decreased significantly. The most intriguing finding of the study was that intratumoral epithelial ER-alpha expression decreased significantly and a trend was found towards an increased expression of ER-beta (Fig. 5). Since ER-alpha is related to proliferation and ER-beta to anti-proliferation, the observed effect of E2 may offer an additional explanation for the unexpected estrogen-antagonistic effect of E2.

Estetrol add-back in Breast Cancer treated with Aromatase Inhibitors or Tamoxifen
Based on its antagonistic activity in breast tissue, E2 has the potential to be developed for add-back treatment in breast cancer in estrogen receptor (ER) positive patients treated with aromatase inhibitors (AI’s) or tamoxifen. Estrogen add-back has the purpose to counteract the serious side effects caused by the extreme estrogen deficiency induced by the AI’s and tamoxifen (hot flushes, vaginal dryness, bone loss, arthralgia, cognition problems). However it should not interfere with the efficacy of the AI’s and tamoxifen. The combination of E2 with an AI seems especially attractive, since the mechanism of action of both drugs is entirely different i.e. receptor antagonism and inhibition of synthesis respectively. The combination might even prove to be complementary when E2 would have estrogen-antagonistic effects under these conditions.

Estetrol add-back in Prostate Cancer treated with GnRH Agonists
GnRH agonists are used for antihormonal treatment of prostate cancer (PC) by inhibition of the gonadotrophins FSH and especially LH, which stimulates the synthesis of testosterone, that stimulates tumor growth. Also in males this type of treatment causes typical “climacteric-like” complaints caused by estrogen deficiency such as hot flushes and sweatings, arthralgia, loss of bone mass, an increased fracture risk and cognition problems. These “climacteric-like” problems might be counteracted by E2 treatment.

In addition, the inhibitory effect of E2 on gonadotrophins may support the effect of the GnRH agonist. Estetrol may even suppress or inhibit the unwanted initial rise of gonadotrophins occurring at the start of GnRH agonist treatment and therefore E2 seems the perfect match for estrogen add-back in men with PC.

Conflict of Interest
H. J. T. Coelingu Bennink is the inventor of E2 and CEO and shareholder of Pantarhei Bioscience, the company developing E2 for several human applications in collaboration with Mithra Pharmaceuticals, consulted by J.-M. Foidart.

References:

Figure 5. The effect of E2 on estrogen receptors in breast tumor tissue. © Pantarhei Bioscience.
Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung

Mitteilungen aus der Redaktion

Besuchen Sie unsere Rubrik

☑ Medizintechnik-Produkte

Neues CRT-D Implantat
Intica 7 HFT QP von Biotronik

Aspirator 3
Labotect GmbH

Artis pheno
Siemens Healthcare Diagnostics GmbH

Philips Azurion:
Innovative Bildgebungslösung

InControl 1050
Labotect GmbH

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung