
Vandenbriele C, Van Aelst L
Balthazar T, Dauwe D, Delcroix M
Gunst J, Huber K, Jacquemin M
Peerlinck K, Vanassche T
Wauters J, Wilmer A, Verhamme P

Journal für Kardiologie - Austrian Journal of Cardiology 2020; 27 (5), 156-158
EINLADUNG
ZUM WEBINAR

„KARDIO – RENALES, METABOLISCHES
RISIKOMANAGEMENT IN ZEITEN DER
PANDEMIE“

TERMIN: DIENSTAG, 16. JUNI 2020

MODERATION: ASSOC. PROF. DR. ALEXANDER NIESSNER, UNIV.KLINIK FÜR INNERE MEDIZIN II,
KLINISCHE ABTEILUNG FÜR KARDIOLOGIE, AKH-WIEN

17:00-17:20 UHR: AUS KARDIOLOGISCHER SICHT:
ASSOC. PROF. DR. ALEXANDER NIESSNER,
UNIV.KLINIK FÜR INNERE MEDIZIN II, KLINISCHE
ABTEILUNG FÜR KARDIOLOGIE, AKH-WIEN

17:20-17:40 UHR: AUS DIABETOLOGISCHER SICHT:
ASSOC. PROF. DR. YVONNE WINHOFER,
UNIV.KLINIK FÜR INNERE MEDIZIN III, KLINISCHE
ABTEILUNG FÜR ENDOKRINOLOGIE UND STOFFWECHSEL,
AKH-WIEN

17:40-18:00 UHR: AUS NEPHROLOGISCHER SICHT:
PRIM. ASSOC. PROF. DOZ. DR. MARCUS SÄEMANN,
6. MED.ABTEILUNG MIT NEPHROLOGIE UND DIALYSE,
WILHELMINENSPITAL

18:00-18:30 UHR: DISKUSIONSRUNDE

ZUR REGISTRIERUNG FÜR DIE INTERAKTIVE TEILNAHME ÜBER LIVE STREAM

Die Teilnahme ist Angehörigen der Fachkreise gemäß Artikel 3 Pharmig Verhaltenscodex vorbehalten.

MIT FREUNDLICHER UNTERSTÜTZUNG VON
Anticoagulant therapy in COVID-19 critically ill: Should we go for more?

C. Vandenbriele¹, L. Van Aelst¹, T. Balthazar¹, D. Dauwe², M. Delcroix³, J. Gunst⁴, M. Jacquemin¹, K. Peerlinck¹, T. Vanassche¹, J. Wauters⁵, A. Wilmer⁵, P. Verhamme¹

Abstract: Critically ill COVID-19 patients often develop a severe pro-thrombotic milieu, as reflected by the markedly increased d-dimer levels. Several cohort studies have reported high rates of thrombotic complications, including deep venous thrombosis (DVT) and pulmonary embolism (PE), myocardial infarction, stroke and microvascular thrombosis. Accordingly, COVID-19 patients who are hospitalized either at a normal, non-intensive care unit (ICU) or at the ICU need to receive appropriate dosages of anticoagulant therapy to prevent or treat these thrombotic complications. This manuscript summarizes the institutional guidance for the antithrombotic prophylaxis and treatment of VTE as outlined by a multidisciplinary team of experts during the first weeks of the COVID-19 pandemic in Europe. Controlled studies are needed to verify the optimal anticoagulation for both prophylaxis and treatment.

Key words: COVID-19 infection, pro-thrombotic milieu, deep vein thrombosis, pulmonary embolism, myocardial infarction, antithrombotic strategy

Introduction

Since the first outbreak of Severe Acute Respiratory Syndrome (SARS) coronavirus-2 (SARS-CoV-2) induced pneumonia (Corona Virus Disease 19; COVID-19) in December 2019, the number of infections by this novel SARS-CoV-2 and subsequent need of hospitalization increased rapidly, first throughout China and later on towards Italy, subsequently Spain and the rest of Europe. SARS-CoV-2 virus, as other coronaviruses, causes a variety of symptoms ranging from mild rhinitis, fever, cough or diarrhea, to pneumonia and acute respiratory distress syndrome- (ARDS) like critically illness with need of challenging ventilator support [1]. The number of hospitalizations, the need of intensive care and number of deaths is still rising worldwide. Currently, published mortality rates range between 2–4.3% (in few countries close to 10%), though true mortality is probably unknown in view of an underestimated denominator. Risk factors have not yet all been identified in large trials, but observational data and case series suggest arterial hypertension, diabetes mellitus and obesity as risk factors for severe disease. However, the underlying physiopathology of COVID-19 is still poorly understood.

Remarkably, patients with severe COVID-19 disease often present with high d-dimer levels [2, 3]. In a study of Tang et al., 71% of non-survivors and 0.6% of survivors met the criteria of disseminated intravascular coagulation during hospitalization, suggesting coagulopathy being an important part of the severe disease spectrum [4]. These findings are further supported by a retrospective analysis of 449 COVID-19 patients by the same group, indicating a better prognosis in heparin treated patients, especially in the severely ill group (sequential organ failure assessment- [SOFA-] score ≥ 4) with highest d-dimer levels (> six-fold upper limit of normal) [4–6]. Recent reports show higher incidence of pulmonary embolism and venous thromboembolism (VTE) [7] in COVID-19 patients when compared to non-COVID intensive care patients. Also, this underlying coagulopathy challenges extracorporeal membrane oxygenation (ECMO) or hemodialysis (HD) because of a higher incidence of filter clotting at the intensive care unit (ICU). Scarce histopathology reports in deceased COVID-19 patients describe clots in small vessels of all organs, not only the lungs but also the heart, liver and kidney [8–10].

Whether d-dimer levels are elevated due to coagulopathy, due to massive pro-inflammatory cytokine upregulation [11] or both is not entirely clear. Nevertheless, anticoagulation with (low molecular weight, LMW) heparin is part of best supportive care for COVID-19 patients due to its known antithrombotic, anti-inflammatory [12] and even hypothesized antiviral effects [13], in addition to its effect on reducing mortality and improving the PaO2/FIO2-ratio in severe ARDS [14]. An important question remains which dose of unfractionated or LMW heparin (LMWH) should be used in critically ill COVID-19 patients. Klok et al. showed a remarkably high incidence of venous and/or arterial thrombosis in critically ill COVID-19 patients (up to 31%) and strongly suggested to increase the prophylactic dose in those patients to high prophylactic doses, even in the absence of randomized data [15].

Based on these findings, various national guidelines were issued to adjust thromboprophylactic strategies, acknowledging there are no controlled studies to support their guidance [16,
Accordingly, the standard guidance for thrombo-prophylaxis at the COVID-19 ward and COVID-19 ICU was adjusted at University Hospitals Leuven and affiliated hospitals as well, as shown in table 1 and 2.

The COVID-19 non-ICU ward

At the non-ICU unit, every patient, independently of weight or kidney function, receives a prophylactic dose of at least 50 IU of anti-Xa LMWH per kg OD (e.g. in our institution enoxaparin 50 IU anti-Xa/kg OD). Prophylaxis is continued beyond the hospital setting for all patients with additional thromboembolic risk factors. There is a low threshold to routinely prescribe out of hospital thrombo-prophylaxis after discharge, e.g. for at least 10 days, and until complete recovery.

The COVID-19 ICU ward

Critically ill COVID-19 ICU-patients receive 50 IU of anti-Xa LMWH per kg BID (in our institution enoxaparin 50 IU anti-Xa/kg BID). Patients requiring therapeutic anticoagulation receive enoxaparin 100 IU of anti-Xa/kg LMWH BID.

At the ICU, the enoxaparin dose is monitored using serial anti-Xa measurements. We aim for anti-Xa levels of 0.15–0.40 IU/ml (prophylaxis) or 0.40–1.0 IU/ml therapeutic*. Notably, anti-Xa and aPTT may differently reflect anticoagulant effect and coagulopathy, particularly in more severe ill patients, and hence offer the clinician complementary information [18].

In patients supported by HD or ECMO, we advise continuous heparin infusion, aiming for anti-Xa 0.3–0.5 IU/ml (together with aPTT adjusted to 50–70s). Notably, anti-Xa and aPTT may differently reflect anticoagulant effect and coagulopathy, particularly in more severe ill patients, and hence offer the clinician complementary information [18].

For critically ill patients, we also recommend prolonged prophylactic anticoagulant therapy with heparin or LMWH, until full recovery or at least until mobilization. We discourage the use of oral anticoagulants because of uncertainties with respect to bioavailability in acutely ill COVID-19 patients [19]. We do not recommend routine screening for asymptomatic deep venous thrombosis, but perform a four-point compression ultrasound in addition to a planned echocardiography or other bedside echo investigations.

Although this regimen is based on scarce evidence and local consensus, the high burden of venous thromboembolism (VTE) as observed by many [20, 21] needs to be mitigated. We will document the rates of VTE and bleeding with this regimen and as part of the prospective follow-up, and as part of this management strategy will perform an ultrasound at day 14–21 or discharge. Hence, this effort joins many others to reduce the burden of VTE in COVID-19 patients.

Table 1: Anticoagulation strategy for hospitalized COVID-19 patients at the University Hospitals Leuven.

<table>
<thead>
<tr>
<th>Patients characteristics</th>
<th>Anticoagulation regimen</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU admission</td>
<td>LMWH 50 IU/kg of anti-Xa, BID e.g. enoxaparin at least 4000 IE anti-Xa, BID</td>
<td>Platelets > 30.000/µl; No active bleed</td>
</tr>
<tr>
<td>ICU, CrCl < 30 ml/min</td>
<td>LMWH 50 IU/kg of anti-Xa, OD e.g. enoxaparin at least 4000 IE anti-Xa, OD</td>
<td></td>
</tr>
<tr>
<td>CVVH, ECMO</td>
<td>UFH-infusion</td>
<td></td>
</tr>
<tr>
<td>Non-ICU admission</td>
<td>LMWH 50 IU/kg of anti-Xa, OD e.g. enoxaparin at least 4000 IE anti-Xa, OD</td>
<td></td>
</tr>
<tr>
<td>Non-ICU, CrCl < 30 ml/min</td>
<td>LMWH 50 IU/kg of anti-Xa, OD e.g. enoxaparin at least 4000 IE anti-Xa, OD</td>
<td></td>
</tr>
</tbody>
</table>

Consider mechanical VTE-prophylaxis in case anticoagulant therapy is contra-indicated.

Table 2: Follow-up strategy for hospitalized COVID-19 patients at the University Hospitals Leuven.

<table>
<thead>
<tr>
<th>Anti-Xa measurement</th>
<th>Follow-up VTE-prophylaxis in COVID-19 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU ward</td>
<td>Daily at morning bloods (8–10h after last LMWH-dose); aim anti-Xa levels of 0.15–0.40 IU/ml (prophylaxis) or 0.40–1.0 IU/ml therapeutic*</td>
</tr>
<tr>
<td>Non-ICU ward</td>
<td>1 or 2 times a week at morning bloods (8–10h after last LMWH-dose); aim anti-Xa levels of 0.15-0.40 IU/ml (prophylaxis) or 0.40–1.0 IU/ml therapeutic*</td>
</tr>
</tbody>
</table>

High vigilance for VTE-symptoms.

*anti-Xa is not assessed at through or at peak (but at morning bloods, 8–10 hours after LMWH-injection), explaining why recommended targets differ from guidance on peak- and through levels.
Anticoagulant therapy in COVID-19 critically ill: Should we go for more?

Acknowledgements

The authors thank the dedicated work of the (non)-intensive care medical and paramedical team of the University Hospitals Leuven.

Conflict of Interest

Drs. Verhamme, Vanassche and Vandebriele report grants and personal fees from Bayer Healthcare, Boehringer Ingelheim, Pfizer, BMS and Daiichi-Sankyo.

Kurt Huber reports lecture fees from Bayer, Bristol Myers Squibb, Boehringer Ingelheim, Daiichi Sankyo, and Pfizer.

The other authors have no conflict of interest to declare.

References:

Mitteilungen aus der Redaktion

Besuchen Sie unsere Rubrik

✓ Medizintechnik-Produkte

Neues CRT-D Implantat
Intica 7 HFT QP von Biotronik

Aspirator 3
Labotect GmbH

Artis pheno
Siemens Healthcare Diagnostics GmbH

Philips Azurion:
Innovative Bildgebungslösung

InControl 1050
Labotect GmbH

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

✓ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung