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Epigenetik der saisonal abhängigen Depression
P. A. Handschuh1, 2, 3

	� Einleitung

Die Herbst-Winter-Depression stellt ein paradigmatisches 
Modell für die Interaktion zwischen Umweltfaktoren und bio-
logischen Prozessen dar. Charakteristisch sind depressive Epi-
soden in den lichtarmen Monaten mit Remission im Frühjahr 
und Sommer [1]. Neben zirkadianen und serotonergen Verän-
derungen rücken zunehmend epigenetische Mechanismen in 
den Fokus, da sie eine molekulare Brücke zwischen saisonalen 
Umweltbedingungen und Genexpression darstellen könnten. 
Insbesondere Methylierungsveränderungen in Genen des 
serotonergen Systems sowie in zirkadianen Signalwegen bie-
ten vielversprechende Ansätze, um die Pathophysiologie der 
Erkrankung besser zu verstehen.

Definition und Epidemiologie
Die Herbst-Winter-Depression, auch als saisonale Depres-
sion, saisonal abhängige Depression oder im Englischen als 
„Seasonal Affective Disorder“ (SAD) bezeichnet, stellt ein 
wiederkehrendes depressives Syndrom dar, das in den meisten 
Fällen durch das regelmäßige Auftreten depressiver Episoden 
in den Herbst- und Wintermonaten sowie durch eine Remis
sion im Frühjahr und Sommer gekennzeichnet ist. Dieser 
Typus stellt die häufigste Form der Erkrankung dar [2]. Dem-
gegenüber ist der Sommer-Typ der saisonalen Depression 
deutlich seltener und durch depressive Episoden geprägt, die 
überwiegend in der wärmeren Jahreszeit auftreten [1].

Auch wenn beide Subtypen einem saisonalen Muster folgen, 
bleibt die Herbst-Winter-Depression die vorherrschende und 
am besten untersuchte Form. Kasper et al. konnten bereits 

Ende der 1980er Jahre zeigen, dass die Häufigkeit der Winter-
variante mehr als viermal so hoch geschätzt wurde wie die der 
Sommervariante [3]. In jüngerer Zeit wird diskutiert, dass sich 
dieses Verhältnis durch klimatische Veränderungen und ver-
änderte Umweltbedingungen möglicherweise etwas verschiebt 
[4, 5]. Ob sich dadurch langfristig auch die relative Häufigkeit 
der beiden Unterformen der Erkrankung verändert, ist bis-
lang unklar – belastbare Aussagen erfordern groß angelegte, 
populationsbasierte epidemiologische Studien, die aber bis-
lang noch ausstehen.

Die Prävalenz und Ausprägung der Herbst-Winter-Depres-
sion variieren erheblich in Abhängigkeit von geografischen 
und klimatischen [6, 7] sowie demografischen Faktoren wie 
Geschlecht und Alter [8]. Darüber hinaus müssen auch der 
Einsatz unterschiedlicher diagnostischer Instrumente [9, 10] 
sowie Unterschiede zwischen spezifischen Patientengruppen 
berücksichtigt werden, etwa im Hinblick auf Ethnie und Kul-
tur [11, 12]. Die meisten epidemiologischen Studien berichten 
allerdings über Prävalenzraten zwischen 1 % und 10 % für die 
Herbst-Winter-Depression [9]. Eine bundesweite Erhebung 
aus Österreich schätzte die Prävalenz auf etwa 2–3,5 % [10]. 
Die saisonal abhängige Depression manifestiert sich typischer-
weise im jungen Erwachsenenalter, meist zwischen dem 18. 
und 30. Lebensjahr [13, 14], wobei spätere Erstmanifestationen 
seltener sind. Langzeitdaten deuten auf Rezidivraten von etwa 
30–60 % innerhalb der ersten Jahre nach einer SAD-Episode 
hin [15, 16]. Während Frauen und jüngere Erwachsene häufi-
ger betroffen sind, scheinen individuelle Rezidivraten stärker 
mit der Ausprägung der saisonalen Vulnerabilität, der Schwere 
der Erstepisode und dem Fehlen präventiver Maßnahmen zu-
sammenzuhängen als mit demographischen Faktoren [17].

Saisonale Muster wurden auch bei der bipolaren affektiven 
Störung beschrieben, bei der affektive Episoden einem wieder-
kehrenden saisonalen Verlauf folgen. Dies zeigt sich auch an 
erhöhten stationär-psychiatrischen Aufnahmeraten aufgrund 
von manischen Episoden im Frühjahr und Sommer [18].
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Kurzfassung: Die saisonal abhängige Depression ist 
eine rezidivierende Form der Depression, deren Auf-
treten einem saisonalen Muster folgt. Neben bereits 
bekannten saisonal auftretenden Abweichungen in 
zirkadianen Regulationsmechanismen und Verände-
rungen des Dopamin-, Noradrenalin- und Serotonin-
Stoffwechsels, die zur Entstehung der Symptomatik 
beitragen, rücken zunehmend epigenetische Prozes-
se in den Fokus, da sie eine molekulare Verbindung 
zwischen Umwelt und Genexpression darstellen.

Epigenetische Veränderungen in MAOA und 
SLC6A4 zeigen geschlechts- und saisonabhängige 
Muster sowie Zusammenhänge mit der Sonnen-
scheindauer. Diese Befunde deuten darauf hin, dass 
epigenetische Prozesse eine wichtige Vermittlungs-
rolle zwischen saisonalen Faktoren und serotonerger 
Neurotransmission spielen könnten, auch wenn die 

Übertragbarkeit peripherer Methylierungsdaten auf 
zentrale Prozesse im Gehirn begrenzt bleibt. Langfris-
tig könnten epigenetische Marker dazu beitragen, be-
sonders vulnerable Personen zu identifizieren und in-
dividualisierte Präventionsstrategien zu entwickeln.

Schlüsselwörter: Saisonal abhängige Depression, 
Epigenetik, DNA-Methylierung

Abstract: Seasonal affective disorder – epi-
genetics. Seasonal affective disorder is a recurrent 
form of depression following a seasonal pattern. In 
addition to well-established seasonal alterations 
in circadian regulatory mechanisms and changes 
in dopamine, norepinephrine and serotonin me-
tabolism that contribute to symptom development, 
epigenetic processes have increasingly come into 

focus, as they represent a molecular link between 
the environment and gene expression. 

Epigenetic alterations in MAOA and SLC6A4 dis-
play sex- and season-dependent patterns as well as 
associations with sunlight exposure. These findings 
suggest that epigenetic processes may contribute to 
the link between seasonal factors and serotonergic 
neurotransmission, although the transferability of 
peripheral methylation data to central brain pro-
cesses remains limited. In the long term, epigenetic 
markers may help to identify vulnerable individuals 
and support the development of personalized pre-
ventive strategies. J Neurol Neurochir Psychiatr 
2025; 26 (4): 100–6.
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Die Herbst-Winter-Depression ist häufig mit psychiatrischen 
Komorbiditäten  assoziiert, darunter Angststörungen (z. B. 
generalisierte Angststörung und Phobien) [13], Aufmerksam-
keitsdefizit-/Hyperaktivitätsstörung (ADHS) [19], Alkohol-
konsumstörung [20] sowie bestimmten Persönlichkeitsstö-
rungen [21].

Diagnostische Einordnung
Im ICD-10 wird die saisonal-abhängige Depression nicht als 
eigenständige Diagnose geführt, sondern als Subtyp der rezi-
divierenden depressiven Störung, wobei ein saisonaler Verlauf 
durch entsprechende Spezifikatoren angegeben werden kann 
[22]. Auch im neuen ICD-11 wird die SAD nicht als eigen-
ständige Störung angeführt – es besteht jedoch die Möglich-
keit, ein saisonales Muster der affektiven Episode im Rahmen 
der Rezidivierenden Depressiven Störung als Zusatzkodierung 
anzugeben (Kapitel 06, Code 6A80.4). Dieser Zusatz kann auch 
bei Patienten mit Bipolar-I- oder Bipolar-II-Störung verwen-
det werden. Darüber hinaus soll der Code ein klinisch relevan-
tes Merkmal des Verlaufs einer affektiven Störung beschreiben 
und Fälle erfassen, bei denen Beginn und vollständige Remis-
sion affektiver Episoden einem regelmäßigen saisonalen Mus-
ter folgen [23].

Klinik
Klinisch unterscheidet sich die Herbst-Winter-Depression von 
nicht-saisonalen Depressionen häufig durch das gehäufte Auf-
treten sogenannter atypischer Symptome, darunter gesteigerter 
Schlafbedarf, vermehrter Appetit und Gewichtsschwankungen 
[24].

	� Therapeutische Ansätze

Die Behandlung der Herbst-Winter-Depression stützt sich auf 
mehrere evidenzbasierten Ansätze, wobei die Lichttherapie 
(Bright Light Therapy; BLT) den etabliertesten Stellenwert 
hat, und ihre therapeutische Wirksamkeit bereits in mehreren 
Meta-Analysen bestätigt werden konnte [25, 26]. Dabei wird 
eine tägliche Exposition gegenüber weißem, UV-gefiltertem 
Licht empfohlen, üblicherweise mit 10.000 Lux für etwa 30 
Minuten. Die morgendliche Anwendung wird als tendenziell 
günstiger eingestuft als abendliche Sitzungen [27, 28]. In der 
Meta-Analyse von Golden et al. (2005) zeigte sich, dass die 
Lichttherapie bei Patienten mit saisonaler affektiver Störung 
mit einer signifikanten Reduktion der Depressionsschwere 
einherging, mit einer Effektstärke von 0,84 (95 %-Konfidenz-
intervall 0,60–1,08) [26].

Als pharmakologische Alternative oder Ergänzung gelten 
selektive Serotonin-Wiederaufnahmehemmer (SSRIs), etwa 
Sertralin [29] oder Fluoxetin [30], die in randomisierten 
Studien eine zufriedenstellende Wirksamkeit zeigten. Für 
Fluoxetin konnte in einer doppelblind-randomisierten Studie 
von Lam et al. beispielsweise eine klinische Response-Rate 
von 67  % und eine Remissionsrate von 54 % nachgewiesen 
werden [31]. Unter den weiteren untersuchten Substanzen 
sticht der Noradrenalin-Dopamin-Wiederaufnahmehemmer 
Bupropion mit verlangsamter Wirkstofffreisetzung hervor – 
der Wirkstoff zeigte sogar eine präventive Wirkung [32]. Eine 
gute Wirksamkeit wurde zudem für einige andere Wirkstoffe 
beschrieben, darunter für den reversiblen Monoaminoxidase-

Inhibitor Moclobemid [33], für den MT₁-/MT₂-Agonisten und 
5-HT2C-Antagonisten Agomelatin [34] sowie den Serotonin-
Noradrenalin-Wiederaufnahmehemmer Duloxetin [35].

Ergänzend rücken auch psychotherapeutische Verfahren in 
den Fokus. Besonders die kognitive Verhaltenstherapie er-
wies sich in einer randomisierten Studie als wirksame Be-
handlungsoption [17]. Insgesamt gilt die BLT als erste Wahl, 
SSRIs als wichtigste pharmakologische Option und kognitive 
Verhaltenstherapie als evidenzbasierte psychotherapeutische 
Alternative.

Zur Prävention wird insbesondere der frühzeitige Beginn 
einer Lichttherapie im Herbst [36] sowie gegebenenfalls die 
prophylaktische Gabe von Antidepressiva, z. B. Bupropion XL, 
dessen signifikante präventive Wirksamkeit in einer prospek-
tiven, randomisierten und placebokontrollierten Studie ge-
zeigt werden konnte, mit einer relativen Risikoreduktion von 
44 % für Patienten, die Bupropion XL einnahmen [32]. Die 
Empfehlungen basieren allerdings auf begrenzter Evidenz. Die 
aktuelle NICE-Leitlinie aus 2022 weist zudem darauf hin, dass 
Depressionen bei SAD-Betroffenen grundsätzlich nach den-
selben Prinzipien behandelt werden sollen wie andere Formen 
unipolarer Depression [37].

	� Pathophysiologie

Bereits seit den frühen Veröffentlichungen durch die Arbeits-
gruppe rund um N. E. Rosenthal in den 1980er und 1990er 
Jahren wurde beschrieben, dass Veränderungen in der zir-
kadianen Regulation und im Serotoninsystem eine zentrale 
Rolle in der Pathophysiologie der Erkrankung spielen könnten 
[1, 38, 39]. Die Wirksamkeit der Lichttherapie als Standard-
behandlung unterstreicht diesen Zusammenhang [27, 40]. 
Dennoch ist die genaue biologische Vermittlung zwischen 
Umwelteinflüssen – allen voran der veränderten Lichtverfüg-
barkeit im Winter – und der klinischen Symptomatik bislang 
nicht abschließend geklärt.

Auf neurobiologischer Ebene wurden in den letzten Jahrzehn-
ten verschiedene pathophysiologische Ansätze im Kontext der 
Herbst-Winter-Depression erforscht, darunter eine zirkadia-
ne Dysregulation mit saisonal auftretenden Veränderungen 
der zirkadianen Melatoninsekretion [41] und der Lichtver-
arbeitung über melanopsinabhängige Mechanismen [42, 43]. 
Darüber hinaus wurden bei SAD-Betroffenen dopaminerge 
Veränderungen beschrieben, darunter eine reduzierte striatale 
Dopamintransporterverfügbarkeit [44]. Befunde zu noradre-
nergen Veränderungen sind uneinheitlich, teils mit inverser 
Assoziation zwischen Symptomschwere und Noradrenalin-
spiegeln [45].

Das meist beforschte Neurotransmittersystem im Kontext 
saisonal abhängiger Depressionen ist allerdings das Seroto-
ninsystem: Bildgebende Studien wiesen darauf hin, dass die 
Verfügbarkeit des Serotonintransporters sowohl bei Gesunden 
[46], als auch bei Patienten mit einer Herbst-Winter-Depres-
sion [47] saisonalen Schwankungen unterliegt, während Spies 
et al. zeigen konnten, dass gesunde Kontrollprobanden – im 
Gegensatz zu betroffenen Patienten – eine saisonale Reduk-
tion der MAO-A-Bindung im Gehirn aufweisen. Auch konnte 
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in dieser Studie gezeigt werden, dass Lichttherapie, nicht aber 
Placebo, die zerebrale MAO-A-Konzentration signifikant 
senkte [48]. Diese Befunde deuten darauf hin, dass saisonale 
Veränderungen der MAO-A-Aktivität – einem Enzym, das 
Serotonin abbaut – die Verfügbarkeit von Serotonin im synap-
tischen Spalt beeinflussen könnten und damit zu den beobach-
teten affektiven Symptomen beitragen.

Beim signifikant selteneren Sommer-Typ [49] werden dysre-
gulative Mechanismen eher mit Hitzestress [50] und weiteren 
meteorologischen Faktoren, wie etwa erhöhter Luftfeuchtigkeit 
[51], in Verbindung gebracht, die zu einer relativen Dysbalance 
monoaminerger Systeme führen könnten. Die Datenlage zur 
möglichen Pathophysiologie ist bislang jedoch unzureichend; 
vergleichbare Untersuchungen, wie sie für die Herbst-Winter-
Depression vorliegen, fehlen bisher.

Genetische Arbeiten weisen auf eine Beteiligung genetischer 
Polymorphismen hin, etwa im SLC6A4-Gen, welches für den 
Serotonintransporter kodiert, oder im MAOA-Gen, welches 
für die Monoaminoxidase A kodiert. Beide Gene sowie die 
dazugehörigen Proteine sind für die serotonerge Neurotrans-
mission von zentraler Bedeutung: Der Serotonintransporter 
reguliert die Wiederaufnahme von Serotonin in die präsynap-
tische Nervenzelle und beeinflusst damit maßgeblich die Ver-
fügbarkeit des Neurotransmitters im synaptischen Spalt, wäh-
rend MAO-A den Abbau von Serotonin katalysiert und somit 
entscheidend für dessen Gesamtverfügbarkeit im Gehirn ist.

Varianten in der 5-HTTLPR-Region von SLC6A4 wurden auch 
im Zusammenhang mit der Herbst-Winter-Depression unter-
sucht: Während Rosenthal et al. in einer US-amerikanischen 
Stichprobe eine erhöhte Häufigkeit des kurzen (S-) Allels bei 
Patienten mit einer Herbst-Winter-Depression fanden [39], 
blieb dieser Befund in nordeuropäischen Populationen ohne 
Replikation [52].

Auch für MAOA konnte in genetischen Arbeiten ein Zusam-
menhang mit affektiven Störungen gezeigt werden: So wurden 
Varianten des MAOA-uVNTR mit verändertem Monoamin-
stoffwechsel und einer erhöhten Anfälligkeit für nicht-saisona-
le Depressionsformen [53, 54], wie auch für atypische Depres-
sion [55] in Verbindung gebracht, wobei im Zusammenhang 
mit Saisonalität vor allem der mögliche Zusammenhang mit 
atypischer Depression von Relevanz ist, da sich diese Depres-
sionsform, wie vormals erwähnt, symptomatisch wie auch bio-
logisch mit der Herbst-Winter-Depression überschneidet [24, 
55]. Aufbauend auf diesen Befunden untersuchten Spies et al. 
den Einfluss genetischer Varianten auf die MAO-A-Verfüg-
barkeit im Gehirn und konnten zeigen, dass MAOA-Polymor-
phismen keinen signifikanten Effekt auf die Proteinexpression 
hatten, während Träger des TPH2-rs1386494-CC-Genotyps 
deutlich erhöhte globale MAO-A-Level aufwiesen [56]. Diese 
Ergebnisse weisen darauf hin, dass neben MAOA auch Gene 
wie TPH2, das die zerebrale Serotoninsynthese reguliert, an 
der Regulation von MAO-A beteiligt sind und damit potenziell 
zur Pathophysiologie saisonaler Depression beitragen.

Dennoch ist die genaue biologische Vermittlung zwischen 
Umwelteinflüssen – allen voran der veränderten Lichtverfüg-
barkeit im Winter – und der klinischen Symptomatik bislang 

nicht abschließend geklärt. Hier setzt die Epigenetik an, die 
mechanistische Erklärungen darüber liefert, wie Umweltein-
flüsse die Genexpression modulieren können.

	� Epigenetik und DNA-Methylierung

Unter Epigenetik versteht man, vereinfacht formuliert, mole-
kulare Mechanismen, die die Aktivität von Genen regulieren. 
Das Forschungsfeld der Epigenetik bildet eine zentrale Schnitt-
stelle zwischen Genetik und Umwelt, wobei epigenetische 
Anpassungen die Genexpression regulieren, ohne die DNA-
Sequenz selbst zu verändern. Solche Anpassungen können 
durch externe Umweltreize induziert und unter bestimmten 
Bedingungen auch transgenerational weitergegeben werden 
[57, 58], wodurch umweltbedingte Einflüsse auf die Gen
expression und damit auf die Vulnerabilität für Stress und 
depressive Erkrankungen an nachfolgende Generationen ver-
mittelt werden könnten.

Zu den wichtigsten Mechanismen zählen DNA-Methylierung, 
Histonmodifikationen und RNA-vermittelte Regulationspro-
zesse [59]. Diese Mechanismen sind in allen Lebensphasen 
von Bedeutung – von der pränatalen Entwicklung bis ins Er-
wachsenenalter – und spielen eine zentrale Rolle in vielfältigen 
physiologischen Prozessen, sodass sie keinesfalls ausschließ-
lich im Kontext von Krankheitsentstehung betrachtet werden 
sollten [60].

Um die Auswirkungen epigenetischer Prozesse auf die Gen
expression einordnen zu können, ist es erforderlich, die grund-
legenden Schritte der Gen-Protein-Synthese zu berücksichti-
gen: Die in der DNA gespeicherte Information wird zunächst 
in prä-mRNA transkribiert, anschließend prozessiert und als 
reife mRNA aus dem Zellkern exportiert, bevor sie an Riboso-
men in eine Polypeptidkette translatiert und nach posttransla-
tionalen Modifikationen als funktionelles Protein vorliegt [61].

Vor allem im Bereich der neuropsychiatrischen Forschung 
wurden zahlreiche Studien zu Veränderungen der DNA-Me-
thylierung durchgeführt, die sowohl Kandidatengene als 
auch epigenomweite Assoziationsstudien (Epigenome-Wide 
Association Studies, EWAS) umfassen. Bei der DNA-Methy
lierung werden Methylgruppen an bestimmte Stellen der 
DNA angehängt, meist an Cytosin-Guanin-Sequenzen (sog. 
„CpG-Sites“). Diese Veränderungen treten häufig in genregu-
latorischen Bereichen auf und können die Aktivität von Ge-
nen beeinflussen, indem sie deren Ablesung verringern oder 
verhindern [62]. Eine erhöhte DNA-Methylierung im Promo-
torbereich geht in den meisten Fällen mit einer verminderten 
Transkription einher und führt in weiterer Folge zu einer ge-
ringeren Proteinexpression [63].

Dieser Mechanismus ist nicht statisch, sondern reagiert sensi-
bel auf eine Vielzahl an externen Einflüssen: Stress [64], Ernäh-
rung [65], Alkohol-, Tabak- und sonstiger Substanzkonsum 
[66, 67], Toxine [68], Hormone [69] sowie Umweltfaktoren 
wie Temperatur [70] oder Sonnenlicht [71] können Verände-
rungen der DNA-Methylierung hervorrufen. Auch saisonale 
Einflüsse spielen eine Rolle: Es gibt Hinweise, dass bestimmte 
Gene auch bei Menschen im Jahresverlauf systematisch unter-
schiedlich methyliert werden [72]. Somit eröffnet die Epigene-
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tik die Möglichkeit, die Einwirkung von Umweltbedingungen 
auf molekularer Ebene besser zu verstehen. Für die Herbst-
Winter-Depression, bei der ein so klar saisonal schwankender 
Umweltfaktor wie das Licht eine zentrale Rolle spielt, erscheint 
dieser Ansatz besonders naheliegend.

In diesem Kontext sind folglich zirkadiane Gene sowie Gene, 
die für die Regulation des Tryptophan-Serotonin-Stoffwech-
sels von Bedeutung sind, als relevant in Hinblick auf Methy-
lierungsveränderungen einzustufen. Tierexperimentelle Daten 
weisen darauf hin, dass veränderte Lichtzyklen stabile, aber 
reversible DNA-Methylierungsveränderungen in zirkadianen 
Genen wie PER2 und CRY1 induzieren können, die mit ver-
änderten zirkadianen Rhythmen und Verhaltensanpassungen 
assoziiert sind [73]. Auch beim Menschen wurden epigene-
tische Veränderungen in zirkadianen Genen beschrieben: 
Schichtarbeit war mit einer differentieller Methylierung in 
CSNK1E, NR1D1, RORA, PER3 sowie im Melatoninrezeptor-
Gen MTNR1A assoziiert, wobei Veränderungen teilweise mit 
Parametern der Schichtarbeit (Dauer, Intensität) und Mustern 
der Melatoninsekretion zusammenhingen [74, 75]. Studien zu 
affektiven Störungen fanden bei unipolarer und bipolarer De-
pression zudem veränderte Methylierungsmuster in MTNR1A 
und MTNR1B, wobei insbesondere eine Hypermethylierung 
von MTNR1B mit erniedrigten Melatoninspiegeln korrelierte 
[76]. Obwohl direkte Daten zur Herbst-Winter-Depression 
fehlen, legen diese Befunde nahe, dass epigenetische Modu-
lationen zirkadianer Gene und Melatoninrezeptoren an der 
Pathophysiologie saisonaler affektiver Störungen beteiligt sein 
könnten.

Darüber hinaus rückt zunehmend auch die epigenetische Re-
gulation von Tryptophan und Serotonin in den Fokus. TPH2, 
welches für Tryptophan-Hydroxylase-2, das Schlüsselenzym 
der Serotoninbiosynthese im Gehirn kodiert, zeigte in ver-
schiedenen präklinischen und klinischen Studien zu Depres-
sion [77], Zwangsstörungen [78] und Stressbelastung [79] 
veränderte DNA-Methylierungsmuster, die mit Expression, 
Krankheitsausprägung und Therapieresponse assoziiert wa-
ren. Auch wenn multimodale Untersuchungen bislang keine 
eindeutige Korrelation zwischen peripherer TPH2-Methy
lierung und serotonerger Neurotransmission im Gehirn nach-
weisen konnten [80], unterstreicht die zentrale Rolle von TPH2 
in der serotonergen Regulation die Notwendigkeit weiterer 
Forschung. Für die Herbst-Winter-Depression existieren bis-
lang kaum direkte Daten, doch die theoretische Plausibilität 
ergibt sich aus dem saisonalen Shift des Tryptophan-Meta-
bolismus zugunsten der Melatoninsynthese im Winter [81] 
sowie aus klinischen Studien, die einerseits eine Wirksamkeit 
von L-Tryptophan-Supplementation [82, 83], andererseits 
eine Rolle von genetischen Polymorphismen von TPH2 [56] 
zeigen konnten. Künftige Studien, die molekulare Bildgebung 
und epigenetische Analysen kombinieren, könnten wesentlich 
dazu beitragen, den Beitrag von TPH2 an der Pathophysiologie 
der Herbst-Winter-Depression präziser zu charakterisieren.

Auch MAOA-spezifische Veränderungen der DNA-Methy-
lierung wurden mehrfach im Zusammenhang mit depressiven 
Störungen untersucht [64, 84, 85], wobei Ergebnisse auf eine 
mögliche vermittelnde Rolle zwischen Umweltfaktoren und 
veränderter Serotoninfunktion hinweisen. So konnten Melas 

et al. zeigen, dass bei Frauen mit Depressionen das MAOA-L-
Allel des uVNTR, das mit einer verminderten Genexpression 
assoziiert ist, in Kombination mit Kindheitsbelastungen mit 
einem erhöhten Erkrankungsrisiko und veränderter MAOA-
Methylierung verbunden war, während spezifische frühe Be-
lastungen (z. B. elterlicher Verlust) mit einer Hypermethylie-
rung des Glukokortikoidrezeptor-Gens NRC1 einhergingen 
[84]. In einer Zwillingsstudie von Peng et al. zeigte sich weiters, 
dass die DNA-Methylierung in mehreren stressbezogenen Ge-
nen (BDNF, NR3C1, SLC6A4, MAOA, MAOB) mit depressiven 
Symptomen assoziiert war und die Methylierung einzelner 
CpGs in BDNF und NR3C1 rund 20 % des Zusammenhangs 
zwischen Kindheitstrauma und Depression mediierte [64].

In einer eigenen Studie wurde die DNA-Methylierung im Pro-
motor/Exon-I/Intron-I-Bereich des MAOA-Gens bei Patien-
ten mit Herbst-Winter-Depression und gesunden Kontrollen 
untersucht und in vivo mithilfe der Positronenemissionstomo-
graphie unter Verwendung des Radioliganden [¹¹¹C]Harmine 
in Beziehung gesetzt [85]. Es zeigte sich kein signifikanter Zu-
sammenhang zwischen der Höhe der peripheren Methylierung 
und der MAOA-Dichte im Gehirn. Wenngleich die periphere 
Methylierung nicht direkt mit der Proteinexpression im Ge-
hirn assoziiert war, konnte in dieser Studie ein saisonaler Trend 
festgestellt werden: Frauen wiesen gruppenunabhängig im 
Frühling und Sommer tendenziell höhere periphere MAOA-
Methylierungswerte auf als im Herbst und Winter. Dieses 
Muster passt zur Annahme, dass epigenetische Prozesse sai-
sonale Schwankungen im serotonergen System mitvermitteln, 
indem eine Hypermethylierung im Sommer mit einer gerin-
geren MAOA-Aktivität und damit erhöhter Serotoninverfüg-
barkeit einhergehen könnte, auch wenn dieser Rückschluss 
in dieser Arbeit noch nicht direkt gezeigt werden konnte. Die 
Beschränkung des Effekts auf Frauen dürfte mit der X-chro-
mosomalen Lokalisation von MAOA und den damit verbun-
denen Konsequenzen für die Methylierung zusammenhängen 
und unterstreicht die Notwendigkeit geschlechtsstratifizierter 
Analysen. Die Ergebnisse deuten zudem darauf hin, dass die 
saisonale Dynamik der DNA-Methylierung von MAOA von 
größerer Bedeutung sein könnte, als die Erkrankung selbst. 
Pathophysiologisch könnten solche Veränderungen eine ver-
mittelnde Rolle zwischen saisonalen Umweltbedingungen und 
serotonerger Neurotransmission spielen, auch wenn ein direk-
ter Effekt der peripheren DNA-Methylierung auf die MAO-A-
Expression im Gehirn in vivo nicht nachweisbar war.

Ein zweiter wichtiger Ansatzpunkt ist SLC6A4. Das SERT-Gen 
ist zentral für die Wiederaufnahme von Serotonin in die präsy-
naptische Nervenzelle und stellt den primären Angriffspunkt 
von Selektiven Serotonin-Wiederaufnahmehemmern (SSRIs) 
dar. Epigenetische Studien konnten zudem zeigen, dass eine 
geringere Methylierung im Promotorbereich von SLC6A4 mit 
einer schlechteren antidepressiven Behandlungseffektivität as-
soziiert ist [86]. Weiters liegen spezifische Befunde zur Herbst-
Winter-Depression vor. In einer eigenen Untersuchung wurde 
die DNA-Methylierung im Promotor von SLC6A4 in Abhän-
gigkeit von der täglichen Sonnenscheindauer in Wien ana-
lysiert [87]. Dabei wurde die mittlere tägliche Sonnenschein-
dauer der 28 Tage vor der Blutabnahme zur Bestimmung 
der peripheren Methylierung berücksichtigt. Die Ergebnisse 
zeigten einen signifikanten Zusammenhang: Mehr Sonnen-
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scheinstunden waren mit einer geringeren Methylierung des 
SLC6A4-Promotors assoziiert. Dieser Effekt war nicht spezi-
fisch für Patienten mit SAD, sondern zeigte sich gruppenüber-
greifend. Ergänzend konnte nachgewiesen werden, dass eine 
geringere Sonnenscheindauer mit höheren Depressionswerten 
im Beck-Depressions-Inventar (BDI) bei SAD-Patienten ver-
bunden war. Ein direkter Zusammenhang zwischen der Me-
thylierung des SLC6A4-Promotors und den BDI-Scores ergab 
sich allerdings nicht. Insgesamt sprechen die Ergebnisse dafür, 
dass die Sonnenscheindauer epigenetische Modifikationen im 
serotonergen System hervorruft, diese jedoch nicht spezifisch 
für die Erkrankung sind. Vielmehr handelt es sich offenbar um 
einen generellen biologischen Mechanismus, mit dem der Or-
ganismus auf veränderte Umweltbedingungen reagiert. Eine 
niedrigere SLC6A4-Promotormethylierung geht theoretisch 
mit erhöhter SERT-Expression und damit verminderter Sero-
toninverfügbarkeit einher – ein Muster, das insbesondere in 
der für Depressionen vulnerablen Winterperiode zu erwarten 
wäre und mit bildgebenden Befunden übereinstimmen würde, 
die eine höhere SERT-Bindung in Herbst und Winter zeigen 
konnten [46]. Dass sich in unseren Daten jedoch der gegen-
teilige Zusammenhang mit der Sonnenscheindauer abzeichne-
te, unterstreicht die Komplexität dieser Beziehungen und legt 
nahe, dass neben der Methylierung weitere Faktoren an der 
Regulation des serotonergen Systems beteiligt sind.

	� Resumée

Zusammengefasst zeigen die epigenetischen Studien zur 
Herbst-Winter-Depression [85, 87] exemplarisch, wie saiso-
nale Faktoren epigenetische Veränderungen im serotonergen 
System modulieren können. Während bei MAOA die Dynamik 
geschlechtsspezifisch und saisonabhängig erscheint, deutet sich 
bei SLC6A4 ein direkter Zusammenhang mit der Sonnenschein-
dauer an. Beide Befunde liefern Hinweise darauf, dass epigene-
tische Mechanismen eine wichtige Vermittlungsrolle zwischen 
Umwelt und Biologie einnehmen. Gleichzeitig machen sie deut-
lich, dass die Übertragbarkeit von peripheren Methylierungs-
daten auf zentrale Prozesse im Gehirn eingeschränkt ist.

Hieraus ergeben sich mehrere methodische Herausforderun-
gen. Zum einen stellt sich die Frage nach der Repräsentativität: 
Inwieweit spiegeln periphere Blutproben die epigenetischen 
Prozesse im Gehirn wider? Zum anderen gilt es, geschlechts-
spezifische Effekte systematisch zu berücksichtigen, insbe-
sondere bei X-chromosomalen Genen wie MAOA. Drittens 
reichen Querschnittstudien nicht aus, um die Dynamik epi-

genetischer Veränderungen ausreichend und im Verlauf zu er-
fassen. Notwendig sind longitudinale, über den Jahresverlauf 
angelegte Studien, die saisonale Schwankungen gezielt abbil-
den können. Zudem bedarf es einer genaueren Auflösung der 
Analysen, etwa durch zelltypspezifische Untersuchungen oder 
die Unterscheidung zwischen 5-Methylcytosin und 5-Hydro-
xymethylcytosin [88]. Letzteres stellt ein Zwischenprodukt der 
Demethylierung dar und ist mit aktiver Genexpression assozi-
iert, während 5-Methylcytosin meist repressive Effekte auf die 
Transkription ausübt.

Trotz dieser Einschränkungen bieten epigenetische Analysen 
spannende Einblicke in die Pathophysiologie der Herbst-
Winter-Depression. Sie sind derzeit noch keine verlässlichen 
Biomarker für die klinische Praxis, verdeutlichen jedoch ein-
drucksvoll, wie sensibel das Genom auf Umweltbedingungen 
reagiert. Langfristig könnte es gelingen, mithilfe epigeneti-
scher Marker besonders vulnerable Personen zu identifizieren 
und so individualisierte Präventionsstrategien zu entwickeln. 
Denkbar wären beispielsweise prädiktive Ansätze, die eine 
gezielte Lichttherapie oder pharmakologische Interventionen 
bereits vor Ausbruch der Symptomatik ermöglichen.

Zusammenfassend lässt sich festhalten, dass die Herbst-Win-
ter-Depression ein paradigmatisches Beispiel für die Interak-
tion von Umwelt und Genetik darstellt. Die vorliegenden Be-
funde unterstreichen das Potenzial epigenetischer Forschung, 
die Pathophysiologie affektiver Störungen besser zu verstehen.
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