Reduced QT dispersion after early thrombolysis - protection of ventricular electrical stability

Lörincz I, Karányi Z, Kun C, Wórum F

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Reduced QT dispersion after early thrombolysis – protection of ventricular electrical stability

I. Lőrinz, C. Kun, Z. Karányi, F. Wórum

Temporary QT prolongation during acute myocardial infarction predicts ventricular tachyarrhythmias. New data suggest that in acute myocardial infarction and in the pathogenesis of other ventricular arrhythmias the QT dispersion demonstrates ventricular inhomogeneity and ventricular instability better than QT prolongation. The aim of this study was to assess the effect of intravenous streptokinase on the QT, JT dispersions and their corrected values during therapy of acute myocardial infarction.

Twenty patients, 10 patients with acute myocardial infarction treated with streptokinase (Group A), 10 acute myocardial infarction patients without streptokinase (Group B) and 10 healthy volunteers (Group C) were studied. Simultaneous 12 lead ECGs were recorded at the time of admission to hospital (day 1) in patients with acute myocardial infarction and prior to discharge (day 8 ± 2) in a standard setting. The QT intervals for each lead were measured manually on the enlarged ECGs by the same observer. Each QT interval was corrected for patient’s heart rate: QTc = QT/RR (msec). There were significantly greater mean QT, QTc, JT, JTc dispersions in Groups A and B in the early hours of infarction compared to Group C (p < 0.05). Patients with anterior myocardial infarction showed significantly greater QT, QTc and JT, JTc dispersions when compared to inferior myocardial infarction patients (p < 0.02). There were significantly greater reductions in QT, QTc, JT, JTc dispersions at day 8 ± 2 after streptokinase therapy compared to patients who were not treated with streptokinase (p < 0.05).

Successful fibrinolytic therapy results in reduction in QT and JT dispersions. This can be taken into consideration in the risk stratification for malignant ventricular tachyarrhythmias and it is another evidence of the benefit of thrombolytic therapy in patients with acute myocardial infarction. *J Clin Basic Cardiol* 1999; 2: 85–8.

Key words: electrocardiography, myocardial infarction, reperfusion, thrombolysis

In patients with acute myocardial infarction (AMI) ventricular tachyarrhythmias can cause serious clinical symptoms and can induce sudden cardiac death. They may result from different myocardial abnormalities or may be a side effect of drug treatment or metabolic abnormalities [1]. Experimental data have demonstrated a strong link between the vulnerability of the ventricular myocardium to serious tachyarrhythmias and increased temporal dispersion of refractoriness [2].

From the beginning of this century the electrocardiogram (ECG) has been used in the diagnosis of different cardiac structural and functional abnormalities, and in the identification and prediction of different serious and potentially fatal brady- and tachyarrhythmias. Experimental and clinical studies have recently indicated that interlead variability of the QT interval in surface 12 lead ECG (ie, the QT dispersion defined as the difference between maximal and minimal QT interval duration) reflects regional differences in ventricular recovery time [3]. This QT dispersion has been linked to the occurrence of arrhythmias in patients with congenital long QT syndromes, postinfarction patients, drug-induced tachycardias and sudden death in patients with chronic congestive heart failure, [4–7]. The homogeneity of recovering time protects against arrhythmias, whereas dispersion of recovering time is arrhythmic [2, 8].

Thrombolytic therapy has become the basic treatment of acute myocardial infarction. It is well known that thrombolytic agents improve survival and preserve myocardial function [9]. In cases of successfully reperfused heart, lower incidences of early and late mortalities have been demonstrated as compared with conventionally treated patients [10]. In parallel with the improvement in myocardial mechanical function the electrical stability also developed better [10].

Although QT prolongation could appear in the acute phase of myocardial infarction [1], and it is known that temporary QT prolongation during AMI predicts ventricular tachyarrhythmias. New data suggest that in AMI the QT dispersion demonstrates ventricular instability better than QT prolongation [11, 12].

The purpose of our investigation was to compare QT, JT dispersions in the early hours of AMI in healthy volunteers and to determine QT, JT dispersions in patients with anterior and inferior AMI to assess the effect of intravenous streptokinase on the QT, JT dispersions and to compare them to those of AMI patients without streptokinase treatment on admission and before discharge [13].

Patients and controls

The data of three groups were analysed: Two groups of ten patients each with AMI in the Coronary Care Unit of the 1st Department of Medicine, University Medical School of Debrecen, and ten normal healthy volunteers were studied. Ten patients with AMI presented with ST-segment elevation associated with typical ischaemic symptoms and received streptokinase therapy within 4 hours of symptom onset (Group A). Standard exclusion criteria included > 4 hours duration of chest pain, hypotension, or uncorrected hypertension, history of bleeding diathesis, recent surgery or trauma, any previous cerebrovascular accident or prior coronary bypass surgery. Ten patients were not treated with streptokinase (Group B). Both groups were on standard cardiac care including serial ECGs, serial creatinine phosphokinase measurements and use of intravenous nitroglycerine, heparin, lidocaine, beta-blockers and inotropic support where appropriate. The con-

Received March 25th, 1998; accepted November 11th, 1998.

From the 1st Department of Medicine, 1Department of Heart and Lung Diseases, University Medical School of Debrecen, Hungary. Correspondence to: István Lőrinz MD, PhD, Debrecen, Dóczy u. 24., H-4032, Hungary; E-mail: lorincz@ibel.dote.hu
trol group comprised 10 healthy volunteers (Group C). (Table 1). The exclusion criteria for our study were (1) unmeasurable T waves, (2) atrial fibrillation, (3) bundle branch block, (4) antiarrhythmic drugs which affect the QT interval, (5) serum potassium level below 3.9 mmol/l or above 5.0 mmol/l.

Methods

In patients with AMI (Groups A and B) simultaneous 12 lead ECGs were recorded for assessment of QT and JT dispersion by means of a 12 channel ECG recorder (Hewlett Packard) at a paper speed of 25 mm/s, within 24 hours of hospital admission and before discharge. All ECGs were examined by one observer who was unaware of the patients' drug and coronary status. In the healthy control group (Group C) ECG was obtained after a 5-minute resting period, with the patients lying comfortably in the supine position. For analysis of the QT and JT intervals, the 12 lead ECGs were enlarged on the same photostat by a factor of three. The RR, QT and JT intervals for each lead were measured by one observer manually with calipers. The QT interval was measured from the first deflection of the QRS complex to the point of the T wave offset, defined by the return of the terminal T wave to the isoelectric TP baseline. In the presence of U wave interrupting T wave, the terminal portion of the visible T wave was extrapolated to the TP baseline in order to define the point of T wave offset. If the end of the T wave could not be reliably determined, the lead was not included in the analysis. JT intervals were measured from J point to the end of the T wave (Figure 1 and Figure 2). Each QT and JT interval was corrected for patient's heart rate using Bazett's formula: $QT_c = \frac{QT}{RR}$ (msec), where QTc is the corrected QT interval. QT, QTc and JT, JTc dispersions were defined as the differences between the minimal and maximal QT or QTc, and JT and JTc values in each of the 12 leads studied [1, 3, 6].

Statistical analysis

Data were expressed as mean ± SD. Differences in group means were analysed using the 2-tailed unpaired T-test or χ^2-square test. A p-value < 0.05 was considered significant.

Results

The QT and QTc maximal interval, the QT and QTc dispersion (mean values and their standard deviations), the JT and

Table 1. Clinical data of different subjects

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Average age (years)</td>
<td>61±12</td>
<td>63±11</td>
<td>61±14</td>
</tr>
<tr>
<td>Range (years)</td>
<td>39–73</td>
<td>44–79</td>
<td>42–74</td>
</tr>
<tr>
<td>Male/Female</td>
<td>6/4</td>
<td>5/5</td>
<td>4/6</td>
</tr>
<tr>
<td>Heart rate</td>
<td>90±17</td>
<td>79±14</td>
<td>77±13</td>
</tr>
<tr>
<td>Measurable leads</td>
<td>6–12</td>
<td>6–12</td>
<td>7–12</td>
</tr>
</tbody>
</table>

Figure 1. The illustrative example of the typical measurement of JT and QT intervals I, II, III, aVR, aVL, aVF and V1-5 ECG leads

Figure 2. The illustrative example of the typical measurement of JT and QT intervals. It shows the inability to measure the end of T wave in leads aVR and V6. I, II, III, aVR, aVL, aVF and V1-5 ECG leads
Successful SK therapy resulted in reduction of QT and JT compared to patients who were not treated with SK (p < 0.05). JT, JTc dispersions at day 8 (SD ± 2) after SK therapy compared to postero-inferior AMI patients (p < 0.02) as shown in Table 1 (86 ± 10, 71 ± 9 versus 62 ± 13, 70 ± 9) dispersions compared to QT, QTc (88 ± 11, 105 ± 11 versus 73 ± 6, 83 ± 8) and JT, JTc (73 ± 09, 62 ± 10, 0.020) dispersions compared to postero-inferior AMI patients (p < 0.02) as shown in Table 3.

There were significantly greater reductions in QT, QTc, JT, JTc dispersions at day 8 (SD ± 2) after SK therapy compared to patients who were not treated with SK (p < 0.05). Successful SK therapy resulted in reduction of QT and JT dispersions (Table 2).

Discussion

QT and QTc dispersion reduction during treatment of the acute phase of myocardial infarction showed the effectiveness of thrombolysis. This was determined before the discharge from hospital after 8 ± 2 days from onset of AMI signs. This kind of decrease in QT dispersion and improvement of cardiac repolarization homogeneity could not be demonstrated by Glancy and coworkers [14]. In the acute phase of myocardial infarction the degree of QT and QTc dispersion depends on the localization of myocardial damage. In patients with anterior AMI larger QT and QTc dispersions than in patients with inferior AMI could be verified. These results were found by other authors, too [10, 15]. The effect of thrombolysis on QT/QTc and JT/JTc dispersion was not evaluated in subgroups of anterior and inferior AMI because of the limited number of patients.

Table 2. Findings of measured QT, JT dispersions in AMI patients with and without SK treatment

<table>
<thead>
<tr>
<th></th>
<th>Group A admission</th>
<th>Group A after SK</th>
<th>Group B admission</th>
<th>Group B after SK</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT dispersion (ms)</td>
<td>88±11</td>
<td>59±9</td>
<td>85±11</td>
<td>80±11</td>
<td>39±7</td>
</tr>
<tr>
<td>QTc dispersion (ms)</td>
<td>99±14</td>
<td>68±9</td>
<td>96±16*</td>
<td>88±14*</td>
<td>42±8</td>
</tr>
<tr>
<td>JT dispersion (ms)</td>
<td>71±9</td>
<td>49±8</td>
<td>67±13</td>
<td>63±12</td>
<td>42±5</td>
</tr>
<tr>
<td>JTc dispersion (ms)</td>
<td>86±10</td>
<td>56±12</td>
<td>76±13</td>
<td>69±13</td>
<td>46±5</td>
</tr>
</tbody>
</table>

p < 0.01, except p < 0.05*

JTc maximal interval, and the JT and JTc dispersions of the three groups are shown in Table 2. There were significantly greater mean QT, QTc, JT, JTc dispersions in both Groups A and B in the early hours of infarction compared to Group C (p < 0.03).

Patients with anterior AMI showed significantly greater QT, QTc (88 ± 9, 105 ± 11 versus 73 ± 6, 83 ± 8) and JT, JTc (73 ± 9, 86 ± 9 versus 62 ± 10, 70 ± 9) dispersions compared to postero-inferior AMI patients (p < 0.02) as shown in Table 3.
in diastolic membrane potential. In some studies, stretch was also shown to cause afterdepolarizations, which in turn were associated with arrhythmias [21, 22].

Autonomic neural mechanisms play a significant role in the regulation of ventricular repolarization and this process may itself increase or decrease dispersion of refractoriness. Heterogeneity of sympathetic innervation is well described in cardiomyopathy patients and has been correlated with the heterogeneity of recovery of excitability [17]. Imbalances in the sympathetic innervation of the heart in acute myocardial infarction or increased tissue sensitivity to catecholamines can result in lower thresholds for ventricular fibrillation [23, 24].

Conclusions of present investigation
1) There were significantly greater mean QT, QTc, JT, JTc dispersions in the early hours of AMI.
2) Patients with anterior AMI showed significantly greater QT, QTc, JT, JTc dispersions compared to those with inferior localization of AMI.
3) There were significantly greater reductions in QT, QTc, JT, JTc dispersions after treatment with SK than without it.
4) QT and JT dispersions are greatest in the early hours of AMI and fall with time and successful thrombolysis.
5) These results can be taken into consideration in the risk stratification for malignant ventricular tachyarrhythmias and they are another evidence for the benefit of thrombolytic therapy in patients with acute myocardial infarction.

References
Mitteilungen aus der Redaktion

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

☑ Bilddatenbank ☑ Artikeldatenbank ☑ Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung