Endothelium-Dependent and -Independent Vasodilation in Young Males with Previous Myocardial Infarction

Vértes A

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
The close relationship between the risk of cardiovascular (CV) disease and the vascular endothelium has been known since the beginning of the 1980s when endothelial structure and function were elucidated [1]. The principle function of the vascular endothelium is to maintain cardiovascular homeostasis. In addition to being an organ in the anatomical sense, the endothelium indeed has functions characteristic of an organ [2]. In particular, it forms a boundary between circulating blood and vascular smooth muscle in the tunica media (barrier function), triggers vascular reactions in response to external stimuli (eg, endothelial injury induces intimal hyperplasia or atherosclerosis – sensory function). It also produces hormones and hormone-like substances acting on the endothelium itself or on adjacent structures (autocrine or paracrine function).

Injury or activation of the endothelium modifies the regulatory functions of cells, and the resulting imbalance impairs endothelial function. According to current knowledge, the vascular endothelium is involved in all steps of the cascade of events culminating in the development of atherosclerosis (Figure 1).

Persistent risk factors and consequent oxidative stress alter the physiological processes of the endothelial system, derange the balance between vasodilator and vasoconstrictive factors, and thereby damage the endothelium [3]. The ensuing endothelial injury is circumscribed initially; however, it becomes generalized if noxious factors persist. Endothelial dysfunction (ED) is associated with decreased production of nitric oxide (NO) and diminished activity of endothelium-dependent hyperpolarizing factor (EDHF), as well as with the elevation of the levels of angiotensin II, endothelin and other locally acting mediator substances. This disequilibrium leads to clinical consequences that include an increased propensity for thrombosis, inflammation, vasoconstriction, the development of vascular lesions, and the rupture of atherosclerotic plaques [4]. Non-invasive appraisal of endothelial function is feasible with the Celermayer protocol, which involves measuring flow-mediated changes of the vascular lumen [5]. Under experimental conditions, the quantification of NO-production is the most useful method for the evaluation of endothelial function. In clinical practice, how-
However, indirect appraisal of vasodilation can be performed as a substitute [1].

Endothelium-dependent vasodilation is triggered by the activation of receptors (through the binding of acetylcholine, bradykinin, P-substance etc.) or distension of the vascular wall (ie, shear stress).

Non-invasive testing involves measuring the changes induced by acetylcholine administration – or the fluctuations of blood flow (ie, FMV) – in the diameter of vessels with duplex ultrasound [6]. The brachial or the femoral superficial artery is used instead of the coronaries, and vasodilation is induced by reactive hyperaemia.

FMV is a function of the NO-production of the endothelium – vasodilation is attenuated or absent if NO-production is reduced (eg, in atherosclerosis). In advanced coronary disease, paradox vasoconstriction can occur instead of vasodilation.

As demonstrated by Celermajer et al. [7], FMV is low before the age of 40. In males, ED appears at the end of the fourth – or, in females, the fifth – decade of life. The manifestations of ED are apparent in the whole population older than 65 years of age.

Although myocardial infarction is most prevalent among middle-aged males, it is not uncommon before 40 years of age and even without preceding angina.

**Objectives**

This study was performed to answer the following questions:

1. Can ED be demonstrated in myocardial infarction occurring in the young?
2. Is the magnitude of ED related to the extent of coronary artery disease?

**Study Population**

The study population comprised male patients aged 40 years or younger who had suffered myocardial infarction during the preceding 3 months. In view of their young age, coronary angiography was performed on all participants – irrespective of the verification of myocardial ischaemia. Diabetic patients were excluded in order to obtain homogeneous study groups.

Twenty-eight male patients with a mean age of 35.3 ± 7.3 years were enrolled. Participants were stratified into one of two groups, according to the angiographically verified extent of coronary artery disease. The control group consisted of males less than 40 years of age, without apparent CV risk factors or any significant disease in their history:

- Group A – single-vessel disease: n = 16
- Group B – multi-vessel disease: n = 12
- Group C – healthy controls: n = 14

The demographic properties of the study population are summarized in Table 1. There were no significant differences between individual parameters of Groups A and B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>16</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Age (mean)</td>
<td>34</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>Vessel disease</td>
<td>1</td>
<td>2–3</td>
<td>–</td>
</tr>
<tr>
<td>Hypertension</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>6.0 mmol/l</td>
<td>6.4 mmol/l</td>
<td>4.6 mmol/l</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>1.05 mmol/l</td>
<td>1.02 mmol/l</td>
<td>1.12 mmol/l</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>3.2 mmol/l</td>
<td>3.56 mmol/l</td>
<td>2.8 mmol/l</td>
</tr>
<tr>
<td>Smoking</td>
<td>6</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

**Statistical Analysis**

Percentage changes compared to baseline were analysed by paired t-test.

**Results**

1. No significant changes were detected between study groups as regards the diameter of the brachial artery or the velocity of blood flow at baseline.
2. Endothelium-dependent vasodilation:
   a) FMV was significantly lower in postinfarction patients than in healthy controls (4.95 ± 6.1 % vs. 15.5 ± 6.8 %; p < 0.001).
   b) As shown by coronary angiography, FMV was significantly lower in multi-vessel, than in single-vessel disease (2.1 ± 4.2 % vs. 7.1 ± 6.1 %; p < 0.001).
3. Endothelium-independent vasodilation:
   a) The magnitude of nitroglycerine-induced vasodilation was similar in postinfarction patients and in controls; however,
   b) it was (not significantly) lower in multi-vessel, than in single-vessel disease (Figure 2).

4. In four of the 28 postinfarction patients, hyperaemia-induced vasoconstriction, instead of vasodilation. These patients had severe hypercholesterolaemia, and multi-vessel disease evidenced by coronary angiography.

**Discussion**

Non-invasive measurement of FMV was first described by Celermajer et al. [7, 8], who demonstrated the attenuation of this phenomenon in (adult and paediatric cases of) familial hypercholesterolaemia, in adult smokers, and in patients with coronary artery disease (CAD). The brachial artery is suitable for the evaluation of endothelial dysfunction, as its status correlates closely with atherosclerotic changes that occur in the coronary and carotid arteries. The brachial artery is
a potential marker of early atherosclerosis both morphologically and functionally. In particular, several studies have shown a close correlation between acetylcholine-induced vasomotor response of coronaries and reactive hyperaemia-induced dilation of the brachial artery [9].

Neunteufl et al. [10] measured FMV in the brachial artery of 74 patients with angina pectoris and of 14 healthy controls, to ascertain potential relationships between the magnitude of endothelial damage and the severity of CAD. In patients with CAD, FMV was significantly attenuated compared to patients without CAD as well as to healthy controls (5.7 % vs. 12.6 % and 15.6 %, respectively). Despite the small size of the study population, subgroup analysis demonstrated a significant correlation between changes in FMV and the extent of CAD (1-, 2-, or 3-vessel disease).

As evidenced by the results, the loss of the dilation of the brachial artery in response to changes in blood flow (distension of the vascular wall) is proportional to the severity of CAD (Figures 3 and 4). In this study, FMV-measurement was found to detect mild-to-moderate CAD with a diagnostic sensitivity of 89 %, and a specificity of 77 %.

In another study [11], 147 CAD patients were followed up for 7.7 years on average. Endothelial function was monitored by non-invasive methods. The primary end-point of the trial was the occurrence of CV-events. An association was found between attenuated endothelium-dependent vasodilation and a higher incidence of CV-events. FMV was reduced in all 16 patients who suffered any type of cardiovascular complication. The results of this study suggest that endothelial dysfunction is an independent predictor of the progression of atherosclerosis as well as of CV-event rate.

In their study conducted on 157 patients, Suwaidi et al. [12] found an increased incidence of CV-events in severe endothelial dysfunction – even in the absence of obstructive CAD. Six patients suffered a CV-event during the 28-month follow-up and all had severe endothelial dysfunction.

The results of the prospective study conducted by Gocke et al. [13] show that reduced FMV found in the brachial artery is an independent predictor of impending CV-events in patients undergoing vascular surgery. Non-invasive evaluation of endothelial function can thus provide prognostic information on the occurrence of CV-events.

Our results suggest that FMV is attenuated in male postinfarction patients under 40 years of age, and this finding evidenced endothelial damage. A relationship was found between the extent of CAD and the severity of endothelial dysfunction. In patients with single-vessel disease, the attenuation of FMV was more obvious than in controls, but less pronounced than in the group with multi-vessel disease.

It can be concluded in view of these observations that the appearance of endothelial dysfunction indicates a high risk of developing CAD, and severe endothelial damage is associated with an increased incidence of CV-events. Therefore, our results confirm that reduced endothelial function can predict the occurrence of cardiovascular complications.

The pathologic process of atherosclerosis is ‘silent’ and reversible until the onset of endothelial dysfunction. As evidenced by an abundance of clinical data, drug therapy (eg, with calcium channel blockers, ACE inhibitors, or statins) and non-pharmacological intervention (eg, diet, exercise) can mitigate endothelial damage [14].

The early recognition of endothelial dysfunction can assist the diagnosis of incipient – and therefore reversible – atherosclerosis.

Appraising endothelial function in due time might provide an opportunity for diagnosing CAD in its subclinical stage and thereby prevent cardiovascular complications. Non-invasive testing of endothelial function is straightforward for medical professionals and non-demanding on patients.

The early recognition of endothelial dysfunction can contribute to preventing the progression of atherosclerosis to an irreversible stage. Moreover, it might assist the primary prevention of life-threatening myocardial infarction by pharmacological and non-pharmacological interventions.

References
5. Corret MC, Anderson TJ, Benjamin EJ, Celemajer DS, Charbonneau E, Cregger MA, Deanfield JE, Drexler H, Gerhard-Herman M, Herrington D,


Mitteilungen aus der Redaktion

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

☑ Bilddatenbank
☑ Artikeldatenbank
☑ Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:
Impressum
Disclaimers & Copyright
Datenschutzerklärung