Increased Platelet Activation by PTFE-Covered Coronary Stent Grafts: A Flow Cytometric Analysis in a Pulsed Floating Model of Recirculating Human Plasma

Beythien Ch, Brockmann MA
Gutensohn K, Nienaber CA

Journal für Kardiologie - Austrian Journal of Cardiology 2004; 11 (7-8), 322-325
Österreichische Kardiologische Gesellschaft
Jahrestagung 2021
27. – 29. Mai 2021
SAVE THE DATE
www.atcardio.at

Online-Congress
Live aus Salzburg

Herzschatztagung Curriculum 2021

Theoretischer Sachkunde-Kurs
20.-22. September 2021
Schloß Wilhelminenberg, Wien
Download Programm
Increased Platelet Activation by PTFE-Covered Coronary Stent Grafts: A Flow Cytometric Analysis in a Pulsed Floating Model of Recirculating Human Plasma

C. Beythien, M. A. Brockmann, K. Gutensohn, C. A. Nienaber

Abstract: Various designs are under investigation to resolve the problem of acute thrombosis and restenosis after stent implantation in coronary arteries. The interaction of stent surface with both platelets and the coagulation system has been shown to play a major role in this process. To investigate effects of PTFE (Teflon) coating stents of the same design with and without PTFE cover (n = 12 for each condition) were placed in an in vitro model of recirculating human platelet rich plasma. Samples were drawn every two min until stent thrombosis to analyze platelet activation by flow cytometry using monoclonal antibodies against activation dependent epitopes CD62p (p-Selectin) and CD63 (GP53) expressed as „mean channel fluorescence intensity” (MCFI). Additionally, time until appearance of macroscopic visible platelet aggregates, and time until stent thrombosis were measured.

Flow cytometric analyses revealed a maximum expression for CD62p (MCFI 37 ± 5.8) after 8 min, and after 10 min for CD63 (MCFI 40.0 ± 5.0) with PTFE-coated stents, meanwhile with bare stents maximum expression of both epitopes (MCFI 38.1 ± 8.4) was reached after 12 min; coated vs. bare stents p = 0.05. PTFE-coating induced platelet aggregates after 5.7 ± 1.7 min, whereas uncoated stents after 6.8 ± 2.7 min; p = 0.04. Likewise, time until stent thrombosis was shorter in systems with PTFE-covered stents compared to uncoated stents; 11.1 ± 1.4 min versus 12.6 ± 2.2 min; p = 0.035. Thus, PTFE-coating increases in vitro thrombogenicity by activating platelets and coagulation.

Methods

To quantify stent induced platelet activation the expression of glycoproteins were measured in an previously described in vitro model [5–7]. Experiments were conducted on blood from 12 obviously healthy, non-smoking male volunteers (age 29 ± 5 years) without any medication during and/or 14 days prior to blood collection. Forty ml of blood was collected via 16G needles from large antecubital veins in plastic syringes diluted with PPP to a final concentration of 250 plt/ml. The platelet count within PRP was measured, and the PRP was filled with sodium citrate (1:10) without the use of a tourniquet. Platelet rich plasma (PRP) was prepared by centrifugation of the whole blood at 300 g for 10 min at room temperature (20 ± 2 °C). After removal of the PRP, the remaining plasma was centrifuged at 2500 g for 10 minutes at room temperature to prepare platelet-poor plasma (PPP). Using a Coulter Counter STKR® (Beckman-Coulter, Fullerton, CA, USA) the platelet count within PPP was measured, and the PRP was diluted with PPP to a final concentration of 250 plt/ml.

Commercialized PTFE covered and uncoated stainless steel stents with a length of 12 mm in expanded condition were mounted on a conventional polyethylene percutaneous transluminal balloon angioplasty catheter (Boston Scientific, Watertown, MA, USA), and implanted into silicon tubings with 12 atm for 30 s to a final diameter of 4 mm to simulate human situations. Then PRP was carefully filled into the tubing systems. After recalcification to physiological concentrations PRP was rotated by a roller pump (Ismatec, Zurich, Switzerland) with a flow rate of 8 ml/min, and a flow velocity of 2 cm/s. The temperature of the in vitro tubing systems was

![Image of the document content]

Received: September 25th, 2003; revision received: October 28th, 2003; accepted: April 18th, 2004.
From the University Hospital Rostock, Department of Cardiology [C.B., C.N.], Rostock, Germany; University Hospital Hamburg-Eppendorf, Department of Transfusion Medicine and Transplantation Immunology [M.A.B., K.G.], Hamburg, Germany.

Correspondence to: Christian Beythien, PD Dr. med. habil., University Hospital Rostock, Department of Cardiology, Ernst-Heydemann-Straße 6, D-18055 Rostock, Germany; E-Mail: christian.beythien@med.uni-rostock.de

For personal use only. Not to be reproduced without permission of Krause & Pachernegg GmbH.
kept stable at 37 °C by a water bath. In three parallel silicon tubings one system was equipped with a PTFE covered stent, one with uncovered stent, and one without stent (control).

Aliquots of 100 µl PRP were removed before the circulation was started and after 2, 4, 6, 8, 10, 12, and 14 min. The samples were immediately fixed with 0.15 M phosphate-buffered saline (PBS; Gibco BRL, Eggenstein, Germany) containing glyoxal 0.2 % w/v (Merck, Darmstadt, Germany), and paraformaldehyde 0.4 % w/v (Serva, Heidelberg, Germany). Stabilization was performed by dilution 1:10 with PBS containing 0.2 % w/v Glycine (Serva, Heidelberg, Germany), labeled directly with monoclonal antibodies, and then stored at +4 °C in the dark [8]. Monoclonal antibodies CD41a, CD62p, and CD63 (Immunotech, Hamburg, Germany) were used. Flow cytometry analysis was performed within 2 hrs on a FACScan® cytometer (Becton Dickinson, Mountain View, USA). A life gate was set around CD41a positive cells; only those cells expressing this platelet specific membrane protein were included, and 20,000 events were analyzed. Results were expressed as „mean channel fluorescence intensity“ (MCFI). Antibody positive cells were defined as cells with fluorescence higher than isotype control.

In addition, time until stent thrombosis, and macroscopic visible platelet aggregates was measured.

**Statistical analysis**

Data comparison over the course of flow cytometric analysis were performed using the Friedman test. Statistical comparisons were performed with „Student’s t-Test“ for paired data; p values of 0.05 or less were considered to be statistically significant. All values indicated are mean ± standard error of mean.

**Results**

**Flow cytometric analyses**

After starting of circulation the expression of monoclonal antibodies increased with a maximum after 8 min for CD62p, and after 10 min for CD63 in the tubing with PTFE covered stents. In the circulation with uncovered stents the maximum expression appeared after 12 min for all measured antibodies (p = 0.05, Figs. 1, 2). In the control tubings the expression of CD62p and CD63 was increasing up to the end of measurement.

**In vitro circulating model**

First macroscopic visual platelet aggregates appeared after 5.6 ± 1.6 min in systems with PTFE-covered stents, whereas
first aggregates in systems with uncoated stents where observed after 6.7 ± 2.7 min; p = 0.04 (Fig. 3). The time until stent thrombosis within the in vitro system containing PTFE-covered stents was 11.0 ± 1.3 min, whereas systems containing uncoated stents occluded after 12.5 ± 2.1 min; p = 0.035 (Fig. 4).

Discussion

PTFE-covered stents have the advantage of reducing peri-interventional distal thrombotic embolization [9], and at least the theoretical benefit of reducing restenosis by blocking plaque protrusion, attenuating diffusion of cytokines, and reducing transmigration of inflammatory cells. However, these advantages only apply for the center part of the stent, whereas the uncovered distal and proximal parts of the stent lead to focal stent edge renarrowing, what influences the overall restenosis rate [10]. Initial case reports and small series demonstrated promising results [11, 12]. Other authors reported about restenosis and acute thrombotic occlusions after clopidogrel was abandoned [13]. Clinical data from a non-randomized study comparing covered and uncovered stents failed to demonstrate significant differences, they could only reveal trends or showed no differences [2]. Colombo and coworkers found in the RECOVERS trial an increased rate of myocardial infarctions both in hospital and in follow up period, whereas restenosis rate was comparable [14]. Proliferation from both the edges and small ruptures of the stent membrane during implantation are potential explanations for the lack of beneficial impact [15]. PTFE-coated guide-wire demonstrate a thrombus formation rate from 25 % to 69 % dependent on their design [16]. Thus, available data are still controversial.

There are other in vitro models to test thrombogenicity of coronary stents that investigate coagulation factors, platelet beta-thromboglobulin, 111Indium labeled platelet accumulation, fibrinogen adsorption, and platelet adhesion. However, comparable in vitro data and test models are unfortunately not existing. The present model does deliberately not apply whole blood. To study the interaction of platelets with e. g. leukocytes, monocytes or other blood corpuscles was not the target. Platelets and platelet activation are inherently not simple to detect by the technique of flow cytometry, standard deviations are substantial anyway. Thus, only platelet rich plasma was used to minimize additional artifacts induced by the other blood corpuscles. Our data revealed a time dependent activation of both platelets and the coagulation system. After detecting a maximum of epoic antigen expression on platelets the number of measurable antigens decreased demonstrating a consumption of available platelets by aggregation, adhesion and thrombus formation in the tubing system. Thus, after 10 min in the tubings with PTFE-stents more measurements were not feasible. P-selectin and glycoprotein 33 are expressed in conditions of activated platelets, and seem to play a key role and appear to be most closely associated with an increase in thrombotic risk [17]. With PTFE-covered stents the expression of these glycoproteins was significantly higher as an evidence of additional platelet activation in contrast to the uncovered stents. In addition, thrombus formation was induced even by a higher degree by the teflon layer. In a recently published animal model, thrombus formation within the stent-graft interface was shown to promote neointimal development [18].

Other authors demonstrated a retarded neointimal hyperplasia only at the midportion of the devices, but did not prevent neointimal pannus ingrowth at the proximal and distal ends [14]. Thus, the question, whether an increased activation of platelets and the coagulation system may even enhance a neointimal covering of the stent can not be answered at this moment.

However, in vitro studies are not necessarily reflecting clinical conditions especially the additional administration of clopidogrel and aspirin as currently recommended. They can only evaluate one fragment of a puzzle. This is a noteworthy limitation of this in vitro model. Increased activation of both platelets and coagulation system may or may not be of advantage in conjunction with stents-grafts. Although this in vitro model offers the opportunity to investigate in vitro and ex vivo impact of inhibitors of platelet aggregation and the coagulation cascade the purpose of this present study was exclusively to explore the genuine influence of PTFE on activation of platelets and coagulation. Additional investigations are needed to further evaluate the biological interactions and implications of PTFE-covered stents.

Acknowledgements

We would like to thank the company JOMED GmbH (Rangendingen, Germany) for supplying the investigated stents.

References

Haftungsausschluss


Bitte beachten Sie auch diese Seiten:

Impressum  Disclaimers & Copyright  Datenschutzerklärung