Basal and stimulated release of long-acting EDRF by bovine pulmonary arteries

Zehetgruber M, Berger R, Christ G, Huber K, Kostner K
Mundigler G, Neunteufl T

Homepage:
www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Basal and stimulated release of long-acting EDRF by bovine pulmonary arteries

M. Zehetgruber, T. Neunteufl, G. Mundigler, G. Christ, K. Kostner, R. Berger, K. Huber

Endothelium-derived relaxing factor (EDRF) is supposed to be identical to nitric oxide (NO). A characteristic of NO is its half-life of 6–50 seconds. We report here bioassay experiments suggesting the presence of a long-acting EDRF. An endothelium intact segment of the main bovine pulmonary artery (generator) and an endothelium deprived artery strip (detector) were seperately perfused with Krebs-Henseleit solution. The effluent of the generator was collected and permitted to stand in an open beaker at 37 °C for periods exceeding five minutes. Following this the collected effluent (CE) perfused the histamine precontracted detector, causing significant relaxation. The same degree of relaxation could be observed after storing CE for 80–120 minutes. After reaching steady state generator effluent (G) was directly superfused over the detector (time delay about two seconds) resulting in a more pronounced relaxation. Addition of pharmacological stimuli of EDRF mediated relaxation augmented, addition of haemoglobin inhibited relaxation as well as by CE and G. Our results show that perfusates from bovine pulmonary arteries contain a material with high degree of stability, being responsible for some part of endothelium mediated relaxation. J Clin Basic Cardiol 1999; 2: 117–9.

Key words: endothelium-derived relaxing factor, nitric oxide, superfusion, acetylcholine, lysophosphatidylcholine, bradykinin

Nitric oxide (NO) is an important bioregulatory molecule mediating intercellular signalling in many physiological processes by raising intracellular 3' 5' cyclic guanosine monophosphate (cyclic GMP) [1, 2]. It is partially responsible for endothelial regulation of vascular smooth muscle tone, accounting for action of endothelium-derived relaxing factor (EDRF) [1–4]. NO is synthesized from L-arginine by two NO syntheses, a constitutive calcium NO synthase, active in vascular endothelium and in the central nervous system [5, 6] and the inducible calcium-independent form, present in macrophages and heart muscle [7, 8].

Several publications have questioned the existence of a single EDRF [9–11]. By electron paramagnetic resonance spectroscopy Greenberg et al. [9] could not detect free nitric oxide. Using anion exchange resin, Long and Berkowitz [10] discriminated between NO and EDRF. NO is characterized by its short half-life of about 6–50 seconds due to rapid conversion to nitrate and nitrite. We report here on the presence of a long – up to 120 minutes – lasting EDRF.

Methods

Bovine lungs from animals of either sex were obtained from a local abattoir. Main bovine pulmonary arteries (12 cm length) and side branches were rapidly isolated, gently cleaned of adhering tissue and immediately put in Krebs-Henseleit solution (K-H). K-H solution was prepared by adding 143 mM Na+ /5.94 mM K+/2.54 mM Ca2+/1.19 mM Mg2+/1.19 mM H2PO4+/127.84 mM CI-/25 mM HCO3-/1.19 mM SO42-/10 mM glucose. The side-branches of the main pulmonary artery (referred to as detector) were ligated by means of titanium haemostatic clips. From the Department of Cardiology, University of Vienna, Vienna, Austria. Correspondence to: Dr. Manfred Zehetgruber, University of Vienna, Department of Cardiology, Währinger Gürtel 18–20, A-1090 Vienna, Austria.

Received November 4th, 1998; accepted November 24th, 1998.

Key words: endothelium-derived relaxing factor, nitric oxide, superfusion, acetylcholine, lysophosphatidylcholine, bradykinin

Copyright © 1999 S. Karger, Basel

Bovine lungs from animals of either sex were obtained from a local abattoir. Main bovine pulmonary arteries (12 cm length) and side branches were rapidly isolated, gently cleaned of adhering tissue and immediately put in Krebs-Henseleit solution (K-H). K-H solution was prepared by adding 143 mM Na+ /5.94 mM K+/2.54 mM Ca2+/1.19 mM Mg2+/1.19 mM H2PO4+/127.84 mM CI-/25 mM HCO3-/1.19 mM SO42-/10 mM glucose. The side-branches of the main pulmonary artery (referred to as detector) were ligated by means of titanium haemostatic clips. From the Department of Cardiology, University of Vienna, Vienna, Austria. Correspondence to: Dr. Manfred Zehetgruber, University of Vienna, Department of Cardiology, Währinger Gürtel 18–20, A-1090 Vienna, Austria.

Received November 4th, 1998; accepted November 24th, 1998.

Key words: endothelium-derived relaxing factor, nitric oxide, superfusion, acetylcholine, lysophosphatidylcholine, bradykinin

Copyright © 1999 S. Karger, Basel

Bovine lungs from animals of either sex were obtained from a local abattoir. Main bovine pulmonary arteries (12 cm length) and side branches were rapidly isolated, gently cleaned of adhering tissue and immediately put in Krebs-Henseleit solution (K-H). K-H solution was prepared by adding 143 mM Na+ /5.94 mM K+/2.54 mM Ca2+/1.19 mM Mg2+/1.19 mM H2PO4+/127.84 mM CI-/25 mM HCO3-/1.19 mM SO42-/10 mM glucose. The side-branches of the main pulmonary artery (referred to as detector) were ligated by means of titanium haemostatic clips. From the Department of Cardiology, University of Vienna, Vienna, Austria. Correspondence to: Dr. Manfred Zehetgruber, University of Vienna, Department of Cardiology, Währinger Gürtel 18–20, A-1090 Vienna, Austria.

Received November 4th, 1998; accepted November 24th, 1998.

Key words: endothelium-derived relaxing factor, nitric oxide, superfusion, acetylcholine, lysophosphatidylcholine, bradykinin

Copyright © 1999 S. Karger, Basel
dium dithionite was removed by dialysis against 100 volumes of distilled water for two hours at 4 °C. Statistical analysis was carried out using Student’s paired and unpaired t-test. A p < 0.05 was considered significant.

Results

Superfusion bioassay

Basal Release: Superfusion of the histamine precontracted detector with CE (Fig. 1) resulted in a relaxation of the detector by 14.9 ± 1.9 % (n = 26, p ≤ 0.001). The same degree of relaxation could be observed after storing CE for 80 to 120 minutes (n = 4). After relaxation and the attainment of a steady state, the detector was again superfused. This resulted in a further increase of relaxation to 36.6 ± 5.1 % (n = 7, p ≤ 0.001). The contribution of CE to total relaxation was 40.5 %.

In control experiments, relaxation induced by the perfusate of endothelium-intact generators was 31.1 ± 7.4 % (n = 10, p ≤ 0.001). Difference in total relaxation between these two experiments was not significant. Superfusates from endothelium-deprived generators caused no significant decline in tension (0.4 ± 1.7 %; n = 11, n.s.). As compared to direct superfusion, which caused a steep decline in tension within a few seconds, onset of relaxation by CE had a time delay of about two minutes and the slope of relaxation was less steep.

The addition of oxyhaemoglobin (10⁻⁵ M) significantly (p ≤ 0.001) reduced relaxation due to CE and G (84.9 ± 20.4 %, n = 7, versus 85.5 ± 43.9, n = 7).

Stimulated Release: Addition of ACh (Fig. 2), LPC and BKN to the generator perfusate augmented relaxation as well as by CE and G (Table 1). Contribution of CE-ACh, CE-LPC and CE-BKN to total relaxation was 53.8 %, 53.9 % and 50.7 %, respectively.

Discussion

Perfusion of endothelium intact vessels allows the measurement of the generation of vasoactive substances, using endothelium denuded artery strips as detectors. Under these bioassay conditions bovine pulmonary arteries release EDRF(s) and prostacyclin upon mechanical (ie, shear stress) and pharmacological stimulation. Due to addition of indomethacin, which inhibits the formation of vasorelaxant prostacyclin, achieved relaxation is due to the liberation of EDRF. EDRF is supposed to be identical or related to nitric oxide, but several studies exist postulating endothelium dependent vasodilating factors different from NO [5–7]. As techniques for detecting NO, chemiluminescence [4] and diazotization [16], require acidic conditions, thus converting all nitroso compounds into nitric oxide, a number of sources must be considered as potential donors of NO. The results of the present study demonstrate that endothelium intact pulmonary arteries (generator), in addition to releasing EDRF (NO), also produce a vasodilator substance with an extended half-life, resulting in a significant relaxation of the detector vessel even after periods of 80-120 minutes. After that period, which exceeds the half-life of NO, significant endothelium-mediated relaxation in bovine pulmonary arteries is still noticeable, inducing a relaxation which is about 50 % of total EDRF induced relaxation. This suggests the production of an endothelium-derived material with high degree of stability. The additional decrease in vascular tension due to direct generator superfusion with a time delay of only two is

<table>
<thead>
<tr>
<th>% Relaxation</th>
<th>Ach 10⁻⁶ M (n = 7)</th>
<th>BKN 10⁻⁵ M (n = 5)</th>
<th>LPC 10⁻⁵ M (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>9.2 ± 1.9</td>
<td>9.8 ± 1.3</td>
<td>16.2 ± 4.1</td>
</tr>
<tr>
<td>CE + Stimulans</td>
<td>22.7 ± 4.5</td>
<td>35.8 ± 4.4</td>
<td>37.3 ± 6.2</td>
</tr>
<tr>
<td>G + Stimulans</td>
<td>43.3 ± 8.4</td>
<td>62.2 ± 7.1</td>
<td>65.1 ± 7.2</td>
</tr>
<tr>
<td>Control</td>
<td>45.7 ± 7.2</td>
<td>51.8 ± 4.0</td>
<td>62.6 ± 7.8</td>
</tr>
</tbody>
</table>

Data are shown as mean ± SEM.
increased relaxation due to short and long lasting EDRFs. As perfusate of endothelium deprived generators failed to decrease vascular tension, released substances obviously derived from endothelial cells.

Oxyhaemoglobin is known to inhibit endothelium-dependent relaxation and to bind to nitric oxide. The addition of oxyhaemoglobin significantly reduced relaxation due to CE and G to the same extent, indicating that the substance inducing relaxation due to CE is bound, like NO, to haemoglobin.

Our results show that significant endothelium mediated relaxation by bovine pulmonary arteries still occurs after a time delay exceeding half-life of nitric oxide. The release of a substance with high degree of stability beside nitric oxide would provide a possible explanation. Another adequate hypothesis would be that only part of vasoactive nitric oxide gets inactivated by oxidation and remaining NO is capable of accomplishing relaxation. Physiologically, both theories could imply that EDRF, which is proposed to be rather a local than a circulating factor also could exhibit some systemic action. Further investigations will be necessary to elucidate the significance of these findings.

Acknowledgments

This work was supported by a grant from the Austrian Nationalbank (Project number 4737).

References

Figure 2. Relaxation of bovine pulmonary arteries under stimulated conditions. A: Representative tracing. In the upper panel significant relaxation was induced by perfusing the detector with effluent of an endothelium intact pulmonary artery (generator) which was collected and stored prior to perfusion for five minutes (CE). Addition of acetylcholine (ACh 10⁻⁶ M) to the perfusion medium of the generator (CE-ACh) augmented relaxation. Following direct superfusion (G-ACh), relaxation was more pronounced. In control experiments (lower panel) only direct superfusion was performed; W = wash. B: Average relaxation.

probably related to the presence of short acting substances, supposedly NO. Expectedly total relaxation was identical when this biphasic slope was compared to control experiments in which labile and more stable substances combined caused relaxation. As compared to direct superfusion, onset of relaxation by CE had a time delay of about two minutes and the slope of relaxation was less steep indicating a maybe different mode of action on vascular smooth muscle. The addition of pharmacological stimuli to the perfusion medium significantly
Mitteilungen aus der Redaktion

Besuchen Sie unsere
zeitschriftenübergreifende Datenbank

☑ Bilddatenbank ☑ Artikeldatenbank ☑ Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der markt-üblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung