Human Myocardial mRNA-Expression of Insulin-Dependent Transmembrane Glucose Transporter is Increased in Human IDDM and Decreased in NIDDM

Gasser S, Barth S, Cichocki L, Friehs I, Gasser R, Klein W
Mächler H, Rigler B

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Human Myocardial mRNA-Expression of Insulin-Dependent Transmembrane Glucose Transporter is Increased in Human IDDM and Decreased in NIDDM

S. Gasser¹, L. Cichocki¹, S. Barth¹, W. Klein(4)¹, I. Friehs², B. Rigler³, H. Mächler³, R. Gasser¹

Transmembrane glucose transport and thus cellular high energy metabolism of the cardiovascular system depend largely on the insulin responsive GLUT4-isoform of the transmembrane glucose transport molecule. Several authors have shown that, in animals, myocardial GLUT4-mRNA expression is decreased in experimental diabetes. There are no data on humans as yet.

Here, we investigate probes of right atrial auricle from diabetic and non diabetic patients subjected to cardiac surgery which were snap frozen in liquid nitrogen. Semiquantitative PCR has been used in order to quantify GLUT4-mRNA using G3PDH as a house keeping gene.

Our results represent the first measurements of GLUT4-mRNA in human myocardial tissue. Seven patients had NIDDM (determined by OGTT, HbA1C and insulin secretion), 7 had IDDM and 7 served as controls. Relative GLUT4-expression amounted to 97.0 ± 10.4 (±SEM) in the control group, 133.3 ± 15.2 in the IDDM-group and 49.1 ± 6.2 (± SEM) in the NIDDM-group. From these data we deduce that DM is initially associated with a decreased GLUT4-expression, the latter then being upregulated by external application of insulin. J Clin Basic Cardiol 2004; 7: 8–10.

Key words: glucose transport, gene expression, real time PCR, hypertension

In mammals, the transport of glucose across cell membranes occurs by facilitated diffusion. Several cDNAs encoding structurally related proteins with the properties of facilitative glucose transporters have been isolated and characterized (GLUT). These molecules regulate transmembrane glucose transport in various tissues. GLUT4 appears to be of special interest for several reasons, in particular, because it is the only GLUT which is directly regulated/stimulated by insulin. It is found in various tissues like cardiac and skeletal muscle, as well as adipose tissue [1]. The isolation and characterisation of a monoclonal antibody that specifically recognised this “muscle-fat isofrom” GLUT4 has revealed that it was a unique isoform, different from the glucose transporters present in erythrocytes, brain, kidney, jejunum and liver. It shows between 50 and 70 % cDNA identity with GLUT1–3. Insulin causes a rapid and reversible increase in glucose transport activity via GLUT4 in cardiac and skeletal muscle [2].

While different types of muscle fibres contain different levels of GLUT4-proteins and gene expression as well as different insulin sensitivities, the nutritional state and contractile activity appear to regulate GLUT4-gene expression. Fasting, for example, results in a two to threefold increase in GLUT4-protein and gene expression in mixed soleus and gastrocnemius muscle preparations [3]. Exercise training also increases GLUT4-protein levels in rat skeletal muscle [4], whereas there are conflicting results concerning patients with NIDDM: In skeletal muscle, Handberg and co-workers found no significant difference in the levels of GLUT4-mRNA and protein in biopsies from patients with and without NIDDM [5], whereas Dohm et al found a significantly decreased expression of GLUT4 in skeletal muscle from insulin resistant patients [6]. In rat cardiac tissue of streptozotocin-diabetic rats, Eckel and Reinauer have shown that GLUT4-mRNA is decreased [7]. Interestingly, in human heart, preliminary data of our own group show that, in NIDDM-patients, GLUT4-mRNA expression is down-regulated [8], whereas it is upregulated in IDDM [9]. Here we present data from patients with IDDM and NIDDM compared with controls. We find that myocardial mRNA expression of insulin-dependent transmembrane glucose transporter is increased in human insulin-dependent diabetes mellitus and decreased in non-insulin-dependent diabetes mellitus compared to control subjects.

Methods

Myocardial tissue probes derive from the right auricle of patients undergoing cardiac surgery. A small part of the right auricle is removed when the heart is put on extracorporeal circulation and is normally wasted. The muscle piece (60–200 mg) will then be snap frozen in liquid NO and stored at −70 °C until homogenisation. Total RNA was isolated using guanidium thiocyanate, phenol-chloroform extraction and alcohol precipitation. Total RNA was hybridised with 32P-labelled human GLUT4-cDNA and re-hybridised with a human G3PDH-cDNA probe to correct for equal amounts of RNA. Quantification was performed by a laser scanner and is expressed in optical densities.

Results

Our results represent one of the first measurements of GLUT4-mRNA in human myocardial tissue. Seven patients had NIDDM (determined by OGTT, HbA1C, and insulin secretion), 7 had IDDM and 7 served as controls. Relative GLUT4-mRNA expression was 97.0 ± 10.4 (±SEM) in the control-group, 133.3 ± 15.2 in the IDDM-group and 49.1 ± 6.2 in the NIDDM-group.

One can see that, in patients with IDDM, relative optical densities reflecting the amount of GLUT4-mRNA are higher, as expressed in examples in Figure 1: 130.4 and 131.8 RODs calculated as the integral of total area corrected the

Received and accepted: August 6th, 2004.

From the ¹Experimental Cardiology Unit, Dept. of Cardiology, Medizinische Universität Graz, Austria, the ²Dept. of Cardiovascular Research, Harvard University, Boston, USA, and the ³Dept. of Cardiovascular Surgery, Medizinische Universität Graz, Austria

Correspondence to: Prof. Robert Gasser, MD, PhD, Department of Cardiology, Medizinische Universitätsklinik Graz, Auernburgerplatz 15, A-8036 Graz, e-mail: robert.gasser@meduni-graz.at
absolute transport molecules. The fact that insulin treated diabetic patients exhibit a down-regulated GLUT4-expression is surprising. However, the facilitated glucose entry into the cell in the presence of higher concentrations of serum insulin may cause the observed down-regulation of transmembrane insulin dependent glucose transport molecules.

Discussion

The interrelation between disturbances in glucose-metabolism, hypertension and myocardial ischemic disease has been known for a long time and thus has been the subject of investigation in a multitude of trials, publications and experimental studies [c.f. 10–19]. Insulin resistance and reactive hyperinsulinemia occur not only with obesity, impaired glucose tolerance or non-insulin-dependent (type 2) diabetes mellitus, but also in many non-obese [20], non-diabetic patients with essential hypertension and seem to be largely responsible for the development of hypertension. The common co-existence of genetic predisposition for hypertension with insulin resistance helps to explain the frequent, although temporally often dissociated, occurrence of hypertension together with dyslipidemia, obesity and type 2-diabetes in a given cohort. In the pathogenesis of metabolic syndrome, inappropriate vasoconstriction, structural changes of the cardiovascular system [21–23] as to its stiffness, but also unfavourable distribution of liquid between the compartments play a key role. While the complete cascade of interactions between glucose-metabolism, KHK, obesity and hypertension has not been elucidated completely as yet, trans-membrane glucose transport is certainly crucial in this setting [1–9].

GLUT4, the insulin-dependent transmembrane glucose facilitative transport molecule, plays a decisive role in insulin-dependent cardiac glucose metabolism, apparently also for myocardial [24] and vascular stiffness [19] as well as in the context of osmolarity, compartmental water distribution and homeostasis [1]. As early as 1995, comparative studies using nuclear magnetic spectroscopy in heart of normotensive (WKY) and spontaneously hypertensive rats (SHR) have looked at glucose uptake during insulin stimulation as well as mRNA-expression of GLUT1 and GLUT4 [25]: in hypertensive rats, expression of GLUT4-mRNA as well as the amount of protein in the membrane had been decreased and cardiac hypertrophy increased by 39 %. Similar results have been found in the afferent vessel of the renal glomeruli in experimental, streptozotocin-induced diabetes mellitus. In diabetic animals, GLUT4 as well as polypeptide expression and thus glucose uptake had been reduced. In this context, it has been speculated that the resulting decrease of GLUT4 could modulate renal blood flow and, in turn, lead to hypertension. We then concluded that defective GLUT4-expression may also occur in human myocardium of diabetics [8–10] as well as hypertensives [26]. Disturbed transmembrane glucose transport may also significantly contribute to the development of severe coronary heart disease [27] and diabetic cardiomyopathy [28]. In the context of hypertension, very few authors have looked at evidence for myocardial and vascular GLUT4-involvement in the development of hypertension in animals [29] and still no reports can be found on GLUT4 in human myocardium. Despite the scant experimental direct evidence, Ikegami et al have already postulated the GLUT4-gene as one of the target genes in essential hypertension when accompanied with insulin resistance [30].

In the present project we have intensified our investigative efforts focussed on the unknown role played by GLUT4 in the development of different forms of diabetes in the context of the above considerations.

GLUT4 and Myocardial Ischemia

Glucose and high energy metabolism play a pivotal role in the development of numerous salient characteristics of myocardial ischemia, such as the gating properties of specific ion-channels, intracellular ion-homeostasis, electrical phenomena, contractility and other phenomena [31–33]. Many of these aspects of myocardial ischemia are linked in one or the other way to transmembrane glucose transport, intracellular glucose metabolism and, in fact, to GLUT4 [34–36]. Myocardial ischemia increases glucose uptake through translocation of GLUT1 and GLUT4 from an intracellular compartment to sarcolemma. This appears to be a beneficial effect during ischemia and possibly recovery. Insulin and ischemia have additive effects to increase in vivo glucose utilisation and augment glucose transporter translocation [37]. Delivery of glucose to the glycolytic pathway appears to be a major controlling site of glycolysis in low-flow ischemia. Downstream regulation is then distributed along the pathway with no one site exerting greater inhibition than reduced glucose delivery [38]. While many experimental studies suggest that an increase in glucose uptake and metabolism by the ischemic myocardium helps to protect myocardial cells from irreversible injury [39], little or nothing is known in this context about human cardiac transmembrane glucose transport, GLUT4 expression and the interrelation between the latter and diabetes during ischemia.

The weakness of the study is twofold: on the one hand, the patient cohorts are relatively small and hence difficult to match concerning co-medications, age and co-morbidities. However, it can be argued that the differences between the groups are statistically relevant, and that the data are certainly valid to inspire larger investigations. Furthermore, it has to be argued that, in the present setting, it is difficult to retrieve sufficient human material in order to aim at larger cohorts. The second weakness targets the semiquantitative method of measurement. RT-PCR would certainly constitute a more

![Figure 1](image)
elegant methodological approach. Hence, inspired by the above measurements, we began to establish real time PCR for the assessment of GLUT4-mRNA under various conditions. Further investigations on the subject are certainly needed in order to elucidate the role played by GLUT4 in the development of diabetes in humans.

Acknowledgement

This project was partially sponsored by a research grant of the Austrian National Bank – OENB Nr. 10829.

References

Further Reading

Mitteilungen aus der Redaktion

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

- Bilddatenbank
- Artikeldatenbank
- Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

- Bestellung e-Journal-Abo

Haftungsausschluss
Bitte beachten Sie auch diese Seiten:

- Impressum
- Disclaimers & Copyright
- Datenschutzerklärung