

PHYTOESTROGENS – VALUE AND SIGNIFICANCE DURING MENOPAUSE

A. S. WOLF

The significantly higher life expectancy in Japan has been a reason for science and speculations for a long time. One important reason is the low cancer mortality. People in southeast Asia have a significantly lower incidence of breast-, endometrial-, colon- and prostate cancer and acute myeloid leucemia as well as a lower probability of developing cardiovascular diseases and osteoporosis [1]. The ethnogenetic special features and the different social and cultural background, along with their nutrition of significantly less saturated fat, plenty of vegetables, green tea and the use of soy products containing phytoestrogens seems to play an important role [2]. Migration studies and epidemiological analysis could prove that a certain diet and the involvement of nutritional substances could play a protective role during the development of cancer. Even within Europe there is a unmistakeable difference from north to south of a higher rate of lung and breast cancer in northern Europe (Finland and Scotland) in comparison to the south (Italy, France and Portugal) [3]. The highly protective part of fruits and vegetables in the mediterranean cuisine is believed to be responsible for this [4]. Cohort and case studies worldwide point out the protective effect of a nutrition with plenty of fruits and vegetables towards a number of different types of cancer [5]. In the meantime there are known estimated 10.000 protective substances in this type of diet, whereas **phytoestrogens**, as secondary

plant substances out of the large group of polyphenols, gained a special meaning.

BIOCHEMICAL CLASSIFICATION OF PHYTOESTROGENS

Phytoestrogens are natural plant substances with a structural and functional similarity to genuine 17β -estradiol. They are mainly absorbed by daily nutrition and are principally categorized in two biochemical classes [6]:

- **Lignans:** Enterolacton and Enterodiol
- **Isoflavones:** Genistein, Daidzein, Biochanin-A, Formononetin and Glycitein

Less significant are: Coumestanes (Coumestrole), Lactones (Ceralenone), Steroles (Sitosterole-A, B).

Very high concentrations are found in the following plants (in decreasing concentration) [7]:

- **Isoflavones:** Soy, red clover, legumes, vegetables
- **Lignans:** Fruits, berries, full grain products, green tea, linseeds, vegetables.

The highest concentration of the phytoestrogens Genistein and Daidzein are found in soy beans as well as other soy products, including for exam-

ple tofu, soymilk, miso, soyflour and refined soyprotein [6, 8, 9].

METABOLISM OF THE MAIN PHYTOESTROGENS

Phytoestrogens are mainly absorbed as precursor metabolites (Lignanes: Matairesinol, Secoisolariciresinol, Isoflavones: Formononetin, Daidzein, Biochanin A) and metabolized by intestinal bacteria to actual active compounds (fig 1). These effective substances will be either further metabolized or excreted without biochemical alteration in the form of urine or faeces. The catalysis of phytoestrogens from ineffective premetabolites points out the special meaning of the intestinal bacteria as an essential metabolic carrier [10].

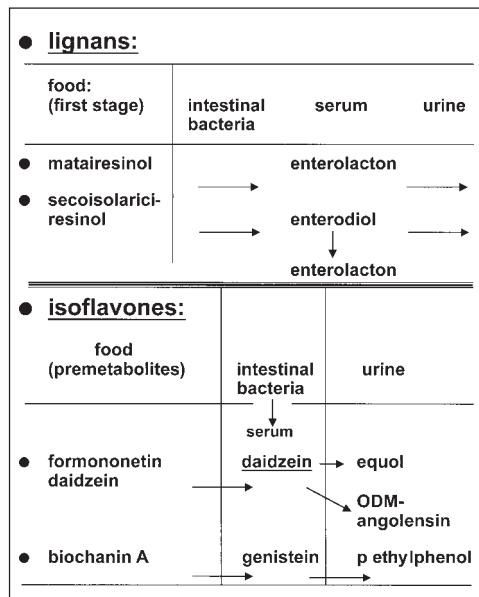


Figure 1. Metabolism of nutritional phytoestrogens

BIOCHEMISTRY OF PHYTOESTROGENS

Due to positioning of both hydroxyl groups in a special dimensional order phytoestrogens have a high sterical identity to 17β -estradiol and are therefore able to bind at the estradiol receptor (fig 2). Moreover, lignans and isoflavones possess a distinct anti-oxidative capacity through the prevalence of two phenyl groups (radical scavengers).

Phytoestrogens bind with different relative binding affinity (RBA) to the estradiol receptor (ER) with special preference of the estradiol receptor β (ER- β). Opposite to the RBA of 17β -estradiol of 100 the RBA of Genistein is 5 on ER- α and 36 on ER- β [11]. Other phytoestrogens, for example coumestane (coumestrole), will bind even with a significantly higher affinity to the ER-protein (Table 1).

The organ specific distribution of the ER with an even higher concentration of ER- β in prostate gland, ovaries, lung, bladder, kidneys, uterus and testis points to a special local efficacy of phytoestrogens in these organs [11]. The effect of phytoestrogens is only partially based on the relatively good binding of the substances at the estradiol

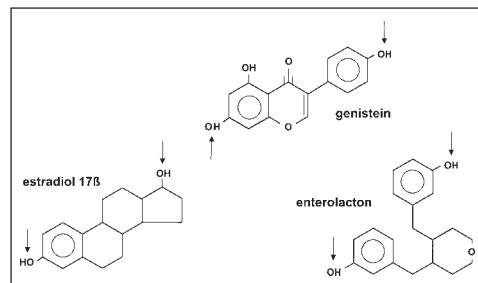


Figure 2. Structures of estradiol 17β and phytoestrogens

receptor. After consumption, the extremely high concentration of isoflavones and lignans is even higher than 17 β -estradiol (fig. 3) [12]. ER will be blocked for the genuine estradiol. It is of uttermost meaning, that phytoestrogens after binding on ER, will only develop a relatively weak estrogenic activity [13, 14]. The bioactivity of all phytoestrogens in bioassays with human endometrial carcinoma cells is markedly weak and comes to for example Genistein only 0,08% of the 17 β -estradiol [13].

BIOLOGICAL ACTIVITY OF PHYTOESTROGENS

Lignans and Isoflavones are weak estrogenic and partially antiestrogenic agents [15]. They furthermore possess antimicrobial, anticarcinogenic and anti-inflammatory potentials. The following effects of phytoestrogens are known:

1. Increase of SHBG with consecutive decreases of free steroid hormone concentrations. Primarily this is valid

for androgenes, but also for estradiol [16, 17].

2. Blocking of the estradiol receptor as a consequence of high concentrations of phytoestrogens: Despite the weak binding affinity, estradiol will be replaced from the receptor due to a significant mass of substrate. The estradiol receptor will be blocked like a proliferation inhibitor [11].
3. The most essential effect of the phytoestrogens is intracellular enzym inhibition: Genistein is able to inactivate the signal chain of all growth factors of the tyrosinkinase family, for example IGF-1 (Insulin-like growth factor), Insulin, EGF (epidermal growth factor), TGF β (transforming growth

Table 1. Relative binding affinity (RBA) of different hormones to the estradiol receptor α and β in mice (acc. to [11])

	ER α	ER β
17 β -Estradiol	100	100
Estron	60	37
17 α -Estradiol	58	11
Estriol	14	21
Tamoxifene	7	6
Coumestrol	94	185
Genistein	5	36
β -Zearalanol	16	14

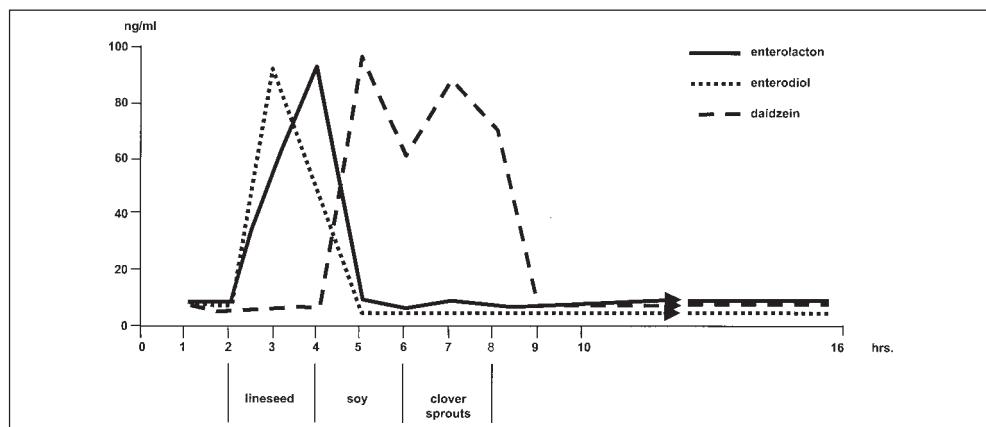


Figure 3. Plasma concentrations of phytoestrogens after different dietary supplements (acc. to [29])

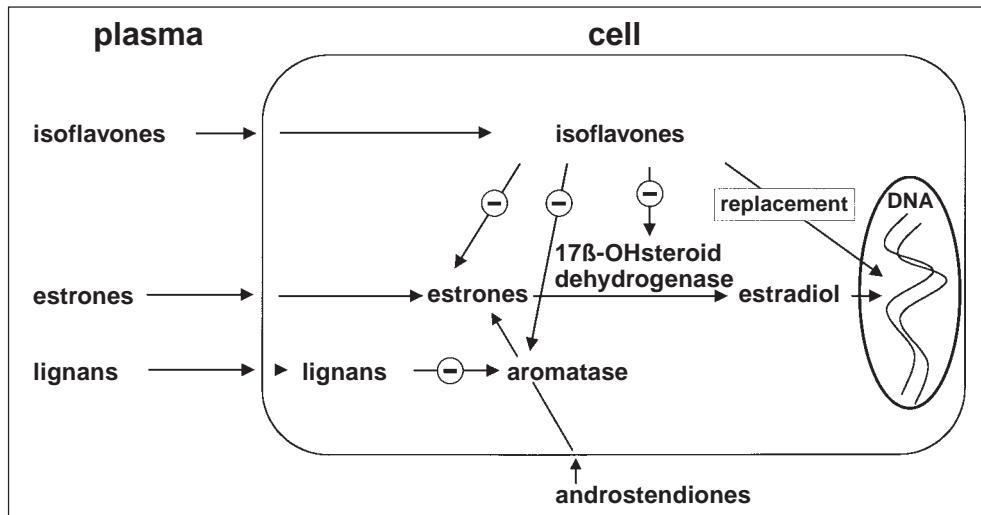


Figure 4. Interaction of phytoestrogens and steroid metabolism

factor) and FGF (fibroblast growth factor) by blocking the tyrosinkinase. Therefore the “second messenger” of the growth hormone signal chain will be established [18, 19]. Furthermore, an inhibitory effect takes place on the aromatase, 17- β -OH-dehydrogenase and 5 α -reductase [20, 21].

CLINICAL EFFECT OF PHYTOESTROGENS

1. Decrease of climacteric complaints

Comparative studies of Japanese women and a comparable group of women from Manitoba (Canada) determined significant differences in the incidence of hot flushes and nocturnal sweatings during pre-, peri- and postmenopausal phases [25]. Many other studies described considerable differences of the rarely and weaker appearance of climacteric complaints (hot flushes, sweating, sleeping disorders, palpitations) in women from Malaysia, South-

East China, Singapore, Japan, Hong-kong and Thailand compared to women of industrialized countries. It would be too simple to transfer these effects to the activity of phytoestrogens only. There are remarkable differences in lifestyle, nutrition, family traditions and also a completely different ethnogenetic background and the socio-cultural life of women within their societies. In Japan there is no concrete terminology for “hot flushes”. Japanese women involved in their tradition and culture, consider the climacteric complaints of western women more a problem of boredom and abundance as well as a problem of losing the luxury of youth [25]. In fact, phytoestrogens are relatively weak estrogenic substance.

A soy diet lasting 4 weeks resulted in only a minor decrease of FSH. There was no increase of SHBG and only a moderate maturation increase of the vaginal epithelium. Hot flushes significantly decreased by the daily intake of soy and full grain flour [26]. Comparative studies of Japanese-oriental women, American and Finnish women could

prove that the Japanese women had a 60 to 110 times higher amount of isoflavones excreted in the urine while the concentration of estrone and estradiol was nearly identical and the amount of estradiol was slightly less (table 2) [16]. The average age in both groups (Japan and Finnland) was 50.4 years. Both groups came from rural regions, therefore the sociopsychological differences were less than assumed. The measured higher concentrations of isoflavones in Japanese women was caused by the consumption of soy products such as Tofu, Miso, Aburage, Atuage, Koridofu as well as cooked soy beans and was therefore seen as the cause of less climacteric complaints and protective effect against cancer. However, more actual placebo-controlled, randomized, double blind studies resulted no effect of 40–160 mg isoflavones to typical postmenopausal symptoms [9]. Most likely these result could be explained by the obvious effect of the placebos, the lower dosage of phytoestrogens and the intake of isoflavones but unchanged lifestyle.

2. Prevention of Osteoporosis

Asian women, esp. women from Japan and Hongkong, have a lower risk to develop osteoporosis and altogether a lower risk of hip fractures [27]. Comparative studies of hospital data showed an incidence rate of hip frac-

tures per 100,000 U.S. citizens at an average of 2.2 times higher for men and 1.9 times higher for women compared to Hongkong [28]. Animal studies resulted in the conclusion that Genistein and Iproflavones (contain 10% Daidzein) were comparably active to conjugated estrogens in the prevention of osteoporosis [29]. Clinical studies showed an increase in bone mineral density as well as in bone mass of the lumbar spine using 90 mg soy supplement [30]. Others found a reduction of the bone resorption markers desoxypyridinoline and telopeptide using 60 mg of soy protein per day in a placebo-controlled study over 3 months [31]. The results of all studies including the one with iproflavone showed a remarkable effect in bone resorption as well as in the way of an improvement in bone mass and also a decrease in resorption marker [31].

3. Cardiovascular Protection

Comparative epidemiological studies indicate that the incidence of cardiovascular diseases in Asian countries is 3 times lower than in industrialized countries. As shown in every study, it is certain that soy proteins significantly lower the lipid content of LDL-cholesterol and increase the HDL-cholesterol [32]. Three preparations of soy products per day with more than 30 g soy protein will reduce total-cholesterol,

Table 2. Excretion of isoflavones, phystoestrogens, and endogenous estrogens in Japanese, American and Finnish women (with western nutrition, in ng/24 h, acc. to [16])

Excretion in urine	Japanese	American	Finnish
Genistein	3,440	–	30.1
Daidzein	2,600	216	40.5
Equol	2,600	62.8	44.2
Estron (postmenopausal)	4.48	–	4.48
Estradiol (postmenopausal)	0.76	–	0.94
Estriol (postmenopausal)	4.48	–	4.44

LDL-cholesterol and triglycerides. 60–70% of the total effect is caused by phytoestrogens [24]. Another important protective effect is the reduction of the LDL-oxidation through phytoestrogens as a radical scavenger. A more differentiated view produces the following aspect:

The higher the value of serum-cholesterol, the higher the effect of the decrease of cholesterol by the isoflavones, which varies from +1% to –12% in comparison to the control study. A net decrease of cholesterol from 1–34% could be measured in men and women, as 19 studies showed. The longer the diet lasted, the better the effect [33].

Some facts concerning the clinical effects of phytoestrogens on the fat metabolism: The net effect in hypercholesterolemic women and men was significantly higher than in normocholesterolemic. This effect does not depend on the protein pattern (for example: Typ-II-A, B). The effect of isoflavones is almost equal for men as well as for women and children. There are no co-effects through certain parts of the used amount of proteins (optimum 20%) as well as the used soy preparations concerning texturized soy, fibers and phytoestrogens. All studies resulted countless variables, especially through interaction with nutrition parts and the speciality of the test protocols [34].

4. Prevention of Malignancies through Phytoestrogens

Epidemiological studies between Asian countries, esp. Japan, compared to western industrialized nations indicate a significantly lower incidence of breast-, prostate- and colon-carcinomas. First findings were from Japanese women that immigrated to the U.S., adapting the same risk of their new environment

after 10 years up to 1 generation [35, 36]. Many observations pointed out that soy products, as a main source of diphenolic phytoestrogens, have the greatest importance in the malignancy protection. The Japanese consume up to 200 mg soy products per day, which is an amount of 25 to 80 mg Isoflavones daily. In western nations the daily consumption is restricted to less than 5 mg [8, 20].

Breast Cancer

Compared to vegetarians, Finnish women with breast cancer and normal nutrition are excreting a lower content of diphenols as discharge of phytoestrogens through their urine [37]. Besides the lower risk of developing breast cancer, Asian women are also developing cancer types with lower malignancy, lower grading and more noninvasive *in situ*-carcinomas. They have generally a better prognosis when diagnosed with cancer, less lymphatic metastasis and a lower mortality rate compared to western women [36]. Experimental tests showed specific effects like cell growth arrest of breast cancer-cell lines e.g. MCF-7 and ZR-75-1 by daidzein, genistein and biochanin-A [38–42]. Controlled studies on the subject of phytoestrogens and risk of breast cancer [43–46], mostly based on nutritional protocols, indicated a significant protection of phytoestrogens towards breast cancer.

A study of 144 patients (Table 3) showed the difference in women recently diagnosed with breast cancer and a healthy control group (matched pairs) analyzing the nutrition and also phytoestrogens in urine collected over a time span of 72 hours (measuring daidzein, genistein, equol, lignane) and blood samples (measuring estradiol and FSH) of cases with breast cancer

and healthy patients [43]. There was slightly decreased values for the excreted Isoflavones in women with breast cancer, but significantly decreased values for the lignanes enterodiol and enterolacton in urine (collected over 72 hours) which indicates that women with breast cancer have a significantly lesser nutritional intake of phytoestrogens compared to the healthy control group (see table 3).

Table 3. Phytoestrogens and breast cancer

Phytoestrogens (nmol/24 h)	Median (IQR) cases	Controls
Daidzein	782.9	913–4
Equol	97.2	108–6
Enterodiol	282.0	316.5
Enterolatone	1,973.4	3,097.7

Prostate Cancer

A lower risk of developing prostate cancer for Japanese men compared to western men is described [5, 47]. This is also attributed to phytoestrogens.

THE MEANING OF PHYTOESTROGENS IN MENOPAUSE COUNSELLING

Phytoestrogens can be prescribed in different preparations.

1. In a special diet: Secondary plant substances are able to block free radicals, which can cause damage to the DNA and play an important role by initiating carcinomas. These secondary plant substances are contained in carotenoids, flavonoids, as colour-, scent- and aromatic substances, highly antioxidative, and more than 10,000

different substances in fruits and vegetables. Phytoestrogens are also contained in a large number of plants. Additional attributes are radical scavengers and inhibition of the carcinoma initiation as well as promotion through blockage of estradiol (Phyto-SERM) and the direct inhibition of growth factors. Especially advised is nutrition with plenty of fresh fruits, fresh vegetables, berries, full grain products and green tea (lifestyle counselling).

2. Additional prescription of isoflavones as a nutritional substance: Meanwhile many manufacturers are offering isoflavones, isolated from soy plants in form of a mixture of daidzein and genistein. The capsules mostly contain 17.5 up to 40 mg isoflavones. Moreover, there are preparations with isoflavones, vitamines, carotenoids, minerals and fatty acids or isoflavones with Gelée royale.

3. Isoflavones from soy products (in health food stores): The different content of isoflavones per soy preparation must be known and adjusted to the daily dosage.

INDICATION FOR THE PRESCRIPTION OF PHYTOESTROGENS

- Women with contraindication for an estrogen substitution (after metastasized, estradiol receptor positive breast cancer).
- Intolerance towards estrogens in any form and risk for coronary heart disease or osteoporosis.
- Women with increased personal risk for breast cancer combined with a

special nutrition (for example NPC = Nutritional Cancer Prevention program).

SUMMARY

Phytoestrogens are an actual highlight in the treatment of problems during postmenopause. The outstanding results from Japan point to the sense and the high value of the phytoestrogens. However, a substitution with phytoestrogens is probably less successful without a change in lifestyle and a diet with lesser gourmet food and more physical activity as well as the awareness of a low calorie diet and a spiritually active lifestyle.

BIBLIOGRAPHY

1. Wirthensohn G, Griffiths K, Altwein JE. Beeinflußt die Ernährungsweise die Entstehung des Mamma- und Prostatakarzinoms? *Onkologe* 1996; 2: 401–8.
2. Steinmetz KA, Potter JD. Vegetables, fruit and cancer prevention: A review. *J Am Diet Assoc* 1996; 96: 1027–3.
3. Parkin DM, Pisani P, Perley J. Estimates of the worldwide incidence of eighteen major cancers in 1985. *Int J Cancer* 1993; 54: 594–606.
4. World Cancer Research Fund. Food, nutrition and the prevention of cancer: a global perspective. American Institute for Cancer Research, Washington DC, 1997; 1–670.
5. Severson RK, Nomura AMY, Grove JS, Stemmerman GN. A prospective study of demographics, diet and prostate cancer among men of Japanese ancestry in Hawaii. *Cancer Res* 1989; 49: 1857–60.
6. Knight DC, Eden JA. A review of the clinical effects of phytoestrogens. *Gynecol* 1996; 87: 897–904.
7. Bingham SA, Atkinson C, Liggins J, Bluck L, Coward A. Phyto-oestrogens: Where are we now? *Br J Nutrit* 1998; 79: 393–406.
8. Coward L, Barnes NC, Setchell KDR, Barnes S. The isoflavones genistein and daidzein in soybean foods from American and Asian diets. *J Agric Food Chem* 1993; 41: 1961–7.
9. Knight DC, Howes JB, Eden JA. The effect of promensil™, an isoflavone extract, on menopausal symptoms. *Climacteric* 1999; 2: 79–84.
10. Adlercreutz H, Fotsis T, Bannwart C, Wahal K, Brunow HG, Hase T. Isotope dilution gas chromatographic-mass spectrometric method for the determination of lignans and isoflavonoids in human urine, including identification of genistein. *Clin Chem Acta* 1991; 199: 263–78.
11. Kuiper GGJ, Carlsson B, Grandien K, Enmark E, Hagblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. *Endocrinol* 1997; 138: 863–70.
12. Morton M, Wilcox G, Wahlquist M, Griffiths K. Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. *J Endocrinol* 1994; 142: 251–9.
13. Markiewicz L, Garey J, Adlercreutz H, Gurge E. In vitro bioassays of non-steroidal phytoestrogens. *J Steroid Biochem Molecobiol* 1993; 45: 399–405.
14. Wilcox G, Wahlquist M, Burger H, Medley G. Estrogenic effects of plant foods in postmenopausal women. *Br Med J* 1990; 301: 905–6.
15. Adlercreutz H, Monsari J, Clark J, Hämalainen E, Wähälä K, Mäkelä T, Hase T. Dietary phytoestrogens and the menopause in Japan. *Lancet* 1992; 339: 1233.
16. Baird DD, Umbach DM, Landsdell L, Hughes CL, Setchell KDR, Weinberg CR, Haney AF, Wilcox AJ, McLachlan JA. Dietary intervention study to assess estrogenicity of dietary soy among postmenopausal women. *J Clin Endocrinol Metab* 1995; 80: 1685–90.
17. Akiyama T, Ishida J, Nakagawa S et al. Genistein: A specific inhibitor of tyrosine-specific protein kinase. *J Biol Chem* 1987; 262: 5592–5.
18. Linassier C, Pierre M, Le Poco JB et al. Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. *Biochem Pharmacol* 1990; 39: 187–93.
19. Adlercreutz H, Hämalainen E, Gorbach S, Goldin B. Dietary phytoestrogens and cancer: in vitro and in vivo studies. *J Steroid Biochem Molec Biol* 1992; 41: 331–7.
20. Adlercreutz H, Bannwart C, Wähälä K, Mäkelä T, Brunow G, Hase T, Ansemanna PJ, Kellis Jr. JT, Vickery L. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. *J Steroid Biochem Molecobiol* 1993; 44: 147–53.
21. Wei H, Wei L, Frenkel K, Bowen R, Barnes S. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. *Nutr Cancer* 1993; 20: 1–12.
22. Kelly GE, Joannou GE, Reeder AY, Nelson C, Waring MA. The variable metabolic response to dietary isoflavones in humans. *Pro Soc Exp Biol Med* 1995; 208: 40–3.

23. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. *N Engl J Med* 1995; 333: 276–82.
24. Lock M. Contested meanings of the menopause. *Lancet* 1991; 337: 1270–3.
25. Murkies AL, Lombard C, Strauss BJG, Wilcox G, Burger HG, Morton MS. Dietary flour supplementation decreases post-menopausal hot flushes; effect of soy and wheat. *Maturitas* 1995; 21: 189–95.
26. WHO study group. Assessments of fracture risk and its application to screening for post-menopausal osteoporosis. WHO Technical Report Series, Geneva, Switzerland, 1994; 843: 11–3.
27. Ho SC, Bacon WE, Harris T, Looker A, Maggi S. Hip fracture rates in Hongkong and the United States, 1988 through 1989. *Am J Public Health* 1993; 83: 694–7.
28. Valente M, Bufalino L, Castiglione GN et al. Effect of 1-year treatment with ipriflavone on bone in postmenopausal women with low bone mass. *Calcif Tissue Int* 1994; 54: 377–80.
29. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdmann JW Jr. Soy protein and isoflavones: Their effects on blood lipids and bone density in postmenopausal women. *Am J Clin Nutr* 1998; 68 (Suppl): 1375S–1379S.
30. Schreiber MD, Rebar RW. Isoflavones and postmenopausal bone health: A viable alternative to estrogen therapy. *Menopause* 1999; 6: 233–41.
31. Carroll, Kenneth K. Review of clinical studies on cholesterol-lowering response to soy protein. *Perspectives in Practice* 1991; 91: 820–7.
32. Washburne S, Burke GL, Morgan T, Anthony M. Effect of soy protein supplementation on serum lipoproteins, blood pressure and menopausal symptoms in perimenopausal women. *Menopause* 1999; 6: 7–13.
33. Nomura A, Henderson BE, Lee J. Breast cancer and diet among the Japanese in Hawaii. *Am J Clin Nutr* 1978; 31: 2020–5.
34. Stemmermann GN, Catts A, Fukunaga FH, Horie A, Nomura AMY. Breast cancer in women of Japanese and Caucasian ancestry in Hawaii. *Cancer* 1985; 56: 206–9.
35. Adlercreutz CH, Goldin BR, Gorbach SL, Höckerstedt KAV, Watanabe S, Hämäläinen EK, Markkanen MH, Mäkelä TH, Wähälä KT, Hase TA, Fotsis T. Soybean phytoestrogens intake and cancer risk. *J Nutr* 1995; 125: 757S–770S.
36. Hirano T, Oka K, Akiba M. Antiproliferative activity of synthetic and naturally occurring flavonoids on tumor cells of the human breast carcinoma cell line Zr-75-1. *Res Commun Pathol Pharmacol* 1989; 64: 69–78.
37. Hirayama T. A large scale cohort study on cancer risks by diet – with special reference to the risk reducing effects of green-yellow vegetable consumption. In: Hayashi Y et al. (eds). *Diets, Nutrition and Cancer*. VNU Sci Press, Tokyo-Utrecht, 1986; 41–53.
38. Martin PM, Horwitz KB, Ryan DS, McGuire WL. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. *Endocrinol* 1978; 103: 1860–7.
39. Wang TTY, Sathyamoorthy N, Phang JM. Molecular effects of genistein on estrogen receptor mediated pathways. *Carcinogenesis* 1996; 17: 271–5.
40. Wang W, Tanaka Y, Han Z, Higuchi CM. Proliferative response of mammary glandular tissue to formononetin. *Nutr Cancer* 1995; 23: 131–40.
41. Ingram D, Sanders K, Kolybaba M et al. Case control study of phyto-estrogens and breast cancer. *Lancet* 1997; 350: 990–4.
42. Wu AH, Ziegler RG, Horn-Ross P, Nomura AMY, West DW, Kolonel LN, Rosenthal JF, Hoover RN, Pike MC. Tofu and risk of breast cancer in Asian-Americans. *Cancer Epidemiol* 1996; 5: 901–6.
43. Yuan JM, Wang QS, Ross RK, Henderson BE, Yu MC. Diet and breast cancer in Shanghai and Tianjin, China. *Br J Cancer* 1995; 71: 1353–8.
44. Hirayama T. Epidemiology of prostate cancer with special reference to the role of diet. *Natl Cancer Inst Monogr* 1979; 53: 149–55.
45. Hughes CL, Cline JM, Williams JK, Anthony MS, JD Wagner, TB Clarkson. Dietary soy phytoestrogens and the health of menopausal women: overview and evidence of cardioprotection from studies in non-human primates. *J Steroid Biochem Molec Biol* 1993; 45: 399–405.
46. Lee HP, Gourley L, Duffy SW, Esteve J, Lee J, Day NE. Dietary effects on breast cancer risk in Singapore. *Lancet* 1991; 337: 1197–200.
47. Mäkelä S, Davis VL, Tally WC, Korkman J, Salo L, Vihko R, Santti R, Korach KS. Dietary estrogens act through estrogen receptor mediated processes and show no antiestrogenicity in cultured breast cancer cells. *Environmental Health Perspectives* 1994; 102: 572–8.

Editor:
Franz H. Fischl

MENOPAUSE ***ANDROPAUSE***

Hormone replacement therapy through the ages
New cognition and therapy concepts

<http://www.kup.at/cd-buch/8-inhalt.html>

Krause & Pachernegg GmbH
VERLAG für MEDIZIN und WIRTSCHAFT