In-vitro Fertilization in Women of Advanced Reproductive Age

Margreiter M, Feichtinger W, Weghofer A

J. Reproduktionsmed. Endokrinol 2005; 2 (1), 5-12

www.kup.at/repromedizin
Online-Datenbank mit Autoren- und Stichwortsuche
DVR-Kongress
Virtuell | 1.10.– 2.10.2021
Dachverband Reproduktionsbiologie und -medizin e.V.

Back to Basics

Tagungspräsident*innen:
Prof. Dr. med. Jean-Pierre Allam, Bonn
PD Dr. rer. nat. Verena Nordhoff, Münster
Prof. Dr. med. Nicole Sänger, Bonn

www.dvr-kongress.de

34. AGRBM Jahrestreffen
27. DGGEF Jahreskongress
26. BRZ Herbsttreffen
41. DGRM Jahrestagung
33. DGA Jahrestagung
35. Jahrestreffen der Deutschen IVF-Zentren

Gesellschaften und Verbände:
AAD, ADE, AGRBM, BRZ, DDG, DGA, DGGEF, DGE, DGRM, DGSMTW, DIR, FertiPROTEKT, SRBM, SEF
Postponement of family planning can be seen as a consequence of increased life expectancy and extended education in industrialized countries. The increasing number of prospective parents undergoing in-vitro fertilization (IVF) due to advanced reproductive age, however, reflects the discrepancy between socio-cultural development and physical limits. Assisted reproduction is, therefore, challenged to create and adapt treatment regimens for women of advanced reproductive age to bridge between this wish for late parenthood and the age-related decline in fecundity. Consequently, the knowledge concerning age-related changes of reproductive functions gains in importance. While follicular depletion and impaired oocyte quality, frequently also called ‘diminished ovarian reserve’, are generally acknowledged as the underlying mechanisms for the decline in maternal fecundity, the way to correctly assess the status of ovarian reserve has remained controversial. Besides increasing attempts to achieve conception, deferring pregnancy and delivery into older age also implies medical risks and ethical considerations. The use of IVF in older women, therefore, raises the issue of the utilization of preimplantation genetic diagnosis (PGD) in the assessment of embryonic aneuploidies, as well as in attempts to optimize pregnancy rates with IVF. Moreover, expected future concepts in assisted reproduction are warranted to allow for the establishment of viable singleton pregnancies in women of advanced reproductive age.

Key words: in-vitro fertilization (IVF), age, ovarian reserve, preimplantation genetic diagnosis (PGD)

In-vitro Fertilization in Women of Advanced Reproductive Age*

M. Margreiter, A. Weghofer, W. Feichtinger

Postponement of family planning is a common phenomenon in industrialized countries. Increased life expectancy and prolonged period of education are major contributing factors for this continuing trend. Contraception and liberalization of abortion facilitate women to exercise control over their fertility. Consequently, young women nowadays not only decide on whether to bear children or not, but they as well make demands on their right to determine the time of their prospective motherhood.

Advanced understanding of female reproductive endocrinology has revealed significant alterations of ovarian responsiveness with age (Figs. 1, 2). Experiments in animal models suggest an age-related decline in endometrial sensitivity to progesterone, caused by a reduction in estrogen receptors. Endometrial biopsies in women aged 35 and above revealed a decline or even the absence of secretory maturation during the menstrual cycle [1].

However, since oocyte donation to women of advanced age results in high pregnancy rates, uterine factors may need to adjust, previously rather standard ovarian stimulation protocols, to the individual patient’s very specific needs. Furthermore, ethical aspects of late parenthood require consideration.

Ovarian Reserve

The diversity of patients currently frequenting IVF clinics reflects a trend towards increasing utilization of ART as a principal infertility treatment. As a consequence, physicians face considerable new challenges as they find a need to adjust, previously rather standard ovarian stimulation protocols, to the individual patient’s very specific needs.

The term ‘ovarian reserve’ is commonly utilized to describe the quality and quantity of a woman’s remaining ovarian follicular pool. In that context, a ‘decreased’ ovarian reserve assumes relative follicular depletion and/or impaired oocyte quality [6]. When Garcia et al first characterized the phenomenon of ‘diminishing ovarian reserve’ in 1983, they defined the condition by peak estradiol levels < 300 pg/ml and a decreased number of oocytes at retrieval. However, even today, so many years later, the ART field still lacks standardized definitions for what really constitutes a decreased or diminished ovarian reserve [7].

In-vitro fertilization needs to stay abreast of these changes. Intensive research is required to optimize fecundity in women of advanced age; concerns about increased risks of fetal malformations and potential neoplasms have to be met. Furthermore, ethical aspects of late parenthood require consideration.

* Parts of this article have been taken from the master thesis “In Vitro Fertilization in Women of Advanced Reproductive Age” by Andrea Weghofer, 2004. All permissions have been granted by the authors for the use of this article.

Received 23.01.2005; accepted after revision: 01.02.2005
From the Wunschbabynetz – Institute for Sterility Treatment, Vienna, Austria
Correspondence to: Wilfried Feichtinger, M.D., Ph.D., Wunschbabynetz – Institute for Sterility Treatment, A-1130 Vienna, Lainzer-strasse 6; E-Mail: wilfried.feichtinger@wunschbaby.at

For personal use only. Not to be reproduced without permission of Krause & Pachernegg GmbH.
De Castro et al, in accordance with Perez et al, hypoth-
receptor binding inhibitor, located in follicular fluid [27].

Lee et al, in contrast, propose the concept of a FSH-
ance of Th-1 preponderance [25, 26].

plantation failure might, therefore, be caused by continu-
dominance in immune responses. Immunological im-
suggest that normal pregnancy requires a switch from
also suggested that, mostly experimental data in animals,
gonadotrophin stimulation [22, 23]. Gleicher et al sug-
conceived smoking to be responsible for follicular loss and
noxious lifestyle. Joesbury et al, for instance, impli-
cer [17, 18], genetic predispositions, such as, for exam-
cheko- or radiation therapy, following treatment for can-
by such conditions as endometriosis, ovarian surgery,
Smoking challenge test') have proven absolutely reliable in
reserve in 9–24 % of infertile women [30].

Beside age-related alterations of the ovary, there is also a
considerable body of evidence that immune processes,
especially abnormal autoimmune processes, can lead to
a premature loss of ovarian function and, at its final stages,
to complete premature ovarian failure (POF), also called
‘premature menopause’ [21]. Pellicer et al hold immuno-
logical mechanisms, such as auto-antibodies against gra-
nulosa cells, and ovarian vascular impairment responsi-
ble for ovarian resistance to age-specific standard-dose
gonadotrophin stimulation [22, 23]. Gleicher et al sug-
gested a similar concept when they referred to immu-
ologically induced reproductive failure which can take the format of various clinical presentations and which they termed ‘The Reproductive Autoimmune Failure Syn-
drome’ (RAFS) [21, 24]. These and many other authors
also suggested that, mostly experimental data in animals,
suggest that normal pregnancy requires a switch from
helper-1 (Th-1) preponderance to Th-2 (Th-2) pre-
dominance in immune responses. Immunological im-
plantation failure might, therefore, be caused by continu-
ce of Th-1 preponderance [25, 26].

Lee et al, in contrast, propose the concept of a FSH-
receptor binding inhibitor, located in follicular fluid [27].
De Castro et al, in accordance with Perez et al, hypo-
thesized that a FSH receptor genotype variant accounts for
poor ovarian response [28, 29]. All of these published
hypotheses, therefore, suggest the need to distinguish be-
tween diminished ovarian reserve and outright ovarian
resistance.

Markers of Ovarian Reserve

Keay et al reported a prevalence of diminished ovarian reserve in 9–24 % of infertile women [30]. Neither any form of basal ovarian function testing (i.e., cycle day 2 or 3 FSH and estradiol testing, for example), nor any form of dynamic testing (i.e., for example the so-called ‘clomi-
phene challenge test’) have proven absolutely reliable in predicting premature ovarian aging. Errors in ovarian as-
sessment can lead to unnecessary cycle cancellations,
will, therefore, increase treatment costs and compound
an already stressful situation [31]. The need for appropri-
ate markers of ovarian function is, therefore, quite obvi-
ous. Such markers of ovarian aging would not only ben-
fit fertility treatments but they could also help families to
time their pregnancy schedules.

Inhibin B is currently under detailed investigation, al-
though recent studies have revealed discordant results. Seifer et al, among others, associate decreased inhibin B (< 45 pg/ml) with diminishing ovarian reserve [32], whereas Creus et al postulate inhibin B to lack additional predictive power beyond the combined value of age and basal FSH [33]. Yong et al found inhibin B to be closely
related to oocyte numbers and, furthermore, concluded that inhibin B concentrations, after FSH administration,
correlate best with ovarian reserve [34]. Fried et al re-
ported a significant correlation between inhibin B levels and the number of oocytes retrieved, though they were unable to show any correlation with the occurrence of pregnancy. The ratio IGF-1:IGFBP-1, in contrast, proved
to be significantly increased in women who became preg-
nant and, thus, may reflect upon oocyte quality [35].

Compared to age, FSH, LH and E2, inhibin B does cur-
rently not represent an inherent part of a routine diagno-
tic work-up for sub-fertility. Its predictive value needs to
prove superior to currently used markers to warrant addi-
tional expenditure. The same applies to serum anti-Mül-
erian factor, to gonadotrophin surge-attenuating fac-
tor and to insulin-like growth factor-I. Martinez et al sug-
gested that a low circulating gonadotrophin surge-attenu-
ating factor may serve as a marker of impaired ovarian
responsiveness [36], whereas van Rooij et al indicated

Figure 1: Outcomes of ART cycles by stage and age groups in the Uni-
ted States, 2001 (adapted from U.S. ART-Report, 2001)

Figure 2: Pregnancy rates, live birth rates and singleton live birth rates
for ART cycles among women aged 40 and older in the United States,
2001 (adapted from U.S. ART-Report, 2001)
that a reduced baseline serum anti-Müllerian concentration reflects follicular loss [37].

Age-Related Maternal Risk Factors

Advanced female age generally implies adverse physical conditions for successful conception and is usually associated with increased body weight and a higher incidence of hypertension, diabetes and dyslipidemia, summarized as the so-called ‘metabolic syndrome’ [38, 39]. The increased incidence of IVF pregnancies, affected by gestational diabetes and described by Koivurova et al., might be, at least in part, due to the classical metabolic conditions observed in PCO patients [40]. Tallo et al. reported an increased incidence of pregnancy-induced hypertension in a case-control study of infertility patients, matched for maternal age, race, order of gestation and delivery, insurance type and neonatal gender [41].

Brizzi et al. demonstrated significantly increased plasma lipid and apolipoprotein concentrations during ovarian stimulation [42]. Higher initial values of blood pressure and serum lipid concentrations, being partly lifestyle- and age-related, could imply elevated risks for atherosclerotic events in women of advanced age in the course of fertility treatment.

Beside possible cardiovascular side-effects of hormone therapy, one also has to consider other possibilities by which endocrine alterations may adversely affect female physiology. For example, Richardson et al. suggested that excessive ovarian hyperstimulation in women with diminished follicular reserve might prematurely initiate menopause [43, 44]. Isikoglu et al. recently published a case report on premature menopause of a 22 year old woman after repeated IVF cycles [45]. Whether ovarian hyperstimulation and the onset of menopause can, indeed, be related requires, however, further study. The fact that ovarian stimulation primarily matures an already in place cohort of follicles raises significant doubt about such a concept.

Climacteric-like symptoms, due to estrogen deprivation during pituitary suppression, and the ovarian hyperstimulation syndrome (OHSS) are the most likely complications to emerge in the course of *in-vitro* fertilization. Both, low ovarian responders and women of advanced reproductive age demonstrate, however, a reduced risk for OHSS.

The relationship between ovarian hyperstimulation and benign gynecological diseases was recently assessed by Klip et al. Their nationwide historical cohort study implied elevated risks for uterine leiomyoma, ovarian cysts requiring surgical removal and thyroid disorders in low responders after *in-vitro* fertilization [46, 47]. Yet, whether these associations are the consequence or the cause of infertility treatment remains to be established. For example, there can be no doubt that thyroid disease, by itself, is associated with premature ovarian failure [48, 49].

Since fertility medications have been in use, the most feared potential complication has been the induction of malignancies by fertility drugs. Case reports, suggesting the occurrence of either breast, ovarian or uterine carcinomas, have emerged [44, 50–53], but the initial lack of nationwide registries, at least initially, did not permit a final resolution of this issue.

Recently, the incidence of malignant tumors linked to assisted reproduction has been evaluated in large-scale population based cohort studies. Whether, in principle, the underlying cause for fertility treatment (i.e. the cause of infertility itself) or exposure to fertility drugs was associated with an increased risk for invasive cancer of the breast, the ovaries or the uterus, has now been the subject of many large-scale epidemiological studies [54, 55].

In such studies Venn et al. were not able to demonstrate any associations between ovarian superovulation with drugs and cancer induction, whereas they did show a higher than expected incidence of ovarian and uterine carcinoma in women with unexplained infertility. Number of treatment cycles and type of fertility drugs used were not significantly related to the risk for malignant tumors of the female genital organs, nor was there a dose-response [55, 56].

Though the overall incidence of cancer development was not greater than expected, the increased number of women being diagnosed with cancer within one year of ART does require some further attention [55, 57]. These findings have at least two possible explanations: Either women reach earlier diagnosis due to either their fertility work-up or growth enhancing effects of hormones on already existing, occult tumors. The lack of long-term tumor increase in patients following IVF, however, supports this hypothesis, suggesting no new induction of malignancies.

Another theory assumes tumor-promoting effects of hyperphysiological estrogen concentrations in the course of extensive gonadotrophin usage. The increased incidence of breast cancer observed during and shortly after pregnancy, which has been attributed to the high estrogen levels during pregnancy, offers a similar situation [54]. Recognizing a first peak incidence of breast cancer in women at approximate age of 35 and above assuming an increased risk for the occurrence of some carcinomas, like breast and ovarian cancers, in women with infertility, responsible fertility treatment means accurate tumor screening in the run-up and in the after-treatment periods to assisted reproduction cycles.

A continuous problem of ART is the much higher incidence of multiple pregnancies [58] (Fig. 3). Its essential causative factor is ascribed to multiple embryo transfers which in many countries lack legal or other regulatory supervision [59]. Multiple gestations are linked to an increased incidence of pre-eclampsia, cardiac strain, pre-

![Figure 3: Risk of having multiple-infant live birth from ART cycles in the United States, 2001 (adapted from U.S. ART-Report, 2001)](image_url)
mature labor and delivery, pregnancy-induced hypertension, gestational diabetes and hemorrhage [60–62]. According to Tough et al, women aged 35 and above are at particular risk for low birth weight and preterm delivery of their offspring [63–65].

One of the most common complications after IVF represents first trimester vaginal bleeding. Its increased prevalence with IVF is believed to be, at least in part, the consequence of more ‘vanishing twins’. IVF pregnancies have also been reported to demonstrate a higher incidence of placenta previa and preterm uterine contractions [40].

Prospective mothers in their late thirties and forties demonstrate an increased risk for miscarriages [66]. Chromosomal abnormalities are believed to play a major role as a causal factor [67, 68]. According to Froster et al, most unbalanced chromosomal translocations result in spontaneous abortion [69]. Other causes of pregnancy loss can be hyperploidy (i.e. trisomy 18 or 16) and trisomies (69 instead of 46 chromosomes). Leridon et al report an age-dependent incidence of spontaneous abortion, resulting in miscarriage increase above 50 % in women aged 40 and above [70].

Though an essential part of chromosomal abnormalities is believed to originate from meiosis I errors, probably due to impaired meiotic recombination, paternal infertility may also account for up to a ten-fold risk of chromosomal aberrations in the offspring [71]. Verlinsky and collaborators have reported meiosis I errors to be responsible for two-thirds of aneuploidies in women aged 35 and above [67], while Munne et al reported an increased rate of mosaicism in embryos that failed to implant after ovulation induction [72].

The maternal age-specific risk for fetal trisomies 21, 18 and 13 is well documented in epidemiological studies conducted by Snijders et al [73]. In women aged 35 to 45, the age-related increase of hyperploidy is following an exponential curve, with a peak at 9–14 weeks of gestation [73].

The relative frequency of Down syndrome (trisomy 21) amongst chromosomal abnormalities is only 33 % at birth, while as high as 54 % at 15–20 weeks gestation and weeks 9–14. Trisomies 18 and 13 account for 30 % of chromosomal abnormalities at 9–14 weeks' gestation with a decrease to 22 % at 15–20 weeks and 14 % at birth [73, 74].

ART research has, therefore, attempted to develop appropriate tools which would allow for the cytogenetic diagnosis of embryonic chromosomal abnormalities, especially, though not exclusively, in women of advanced reproductive age.

Preimplantation Genetic Diagnosis (PGD)

Besides gene defects which put couples at risk for the transmission of specific genetic disorders into their offspring, advanced female reproductive age has proven to be a main contributor to the occurrence of embryonic aneuploidy [75, 76]. As an underlying mechanism, Henderson and Edwards, among others, demonstrated a relation between the age-related reduction of meiotic crossing-over and the occurrence of aneuploidy. According to their ‘production-line hypothesis’, higher meiotic recombination frequency is observed in oocytes that differentiate early during fetal development and are, consequently, destined to ovulate first [77].

Gianaroli et al have reported aneuploidy rates of 60 % in embryos of women with repeated IVF failure, aged 36 and above. Chromosomal anomalies in first trimester pregnancies have been found to increase continuously from 0.6 % in patients aged 35 to 2.2 % in women above age 40 [75, 78]. These data strongly suggest that the majority of affected embryos is, indeed, subject to early cleavage arrest or implantation failure. After analysis of 2058 embryos, Munne et al concluded that there had to be a 90 % aneuploidy-related cleavage-arrest prior to or shortly after implantation [76, 79, 80].

The chromosomes most frequently involved in aneuploidy are reported to be chromosomes 22, 16, 21 and 15 [81]. The loss of embryos, affected by these aneuploidies, in the course of implantation, therefore, may explain both the age-related decline in fertility and the increasing implantation failure rate in women of advanced reproductive age [82].

According to Kuliev and Verlinsky, preimplantation genetic diagnosis in 6733 oocytes in women aged 35 and above revealed an overall aneuploidy of 52 %. Meiosis I errors accounted for 41.8 % of chromosomal anomalies, meiosis II errors were observed in 30.7 % and both, meiosis I and II errors, were seen in 27.6 % of the affected oocytes [67, 83].

Studies on the morphology of the meiotic spindles, performed by Volarcik et al, strongly support the hypothesis that the mechanisms of control over the process of physiological chromosome division and segregation in human oocytes is subject to age-related deterioration. While oocytes from young women showed regular bipolar spindle formation with tightly arranged chromosomes on the spindle equator, oocytes in older women depicted abnormally attached chromosomes and diffuse spindle formation during meiosis II [84].

Though the above noted aneuploidy rate in oocytes corresponded to that observed in preimplantation embryos, the types of chromosomal anomalies differed, however [67, 83]. These findings might be attributable to a high frequency of mosaicism in cleavage stage embryos and as a possible consequence of paternally derived genetic defects [81, 85, 86]. Some mosaicism are associated with maternal age, whereas others are attributable to immaturity of centromeric sperm structures, as one encounters in testicular sperm extraction patients [75, 80]. 90 % of aneuploidy is, however, estimated to be related to meiosis. In such cases, polar body analysis for preimplantation aneuploidy screening, therefore, makes sense.

Comparative studies on FISH for chromosomes X, Y, 13, 15, 16, 18, 21, 22 plus a ninth probe (either 1, 7, 14 or 17) in a single cell in women aged 40 (PGD vs. non-PGD cycles in matched cohorts) demonstrated significantly higher implantation rates after PGD, particularly in first IVF cycles. Repeated IVF failure or substantially reduced numbers of zygotes, however, were identified as negative prognostic factors, resulting in impaired implantation [87, 88]. Pehlivan et al, in contrast, report pregnancy rates of 34 % (controls: 33 %) and implantation rates of 20 % (controls: 24 %) in PGD cycles of women with re-
current implantation failure, despite oocyte aneuploidy of 67% (controls: 36%). Pregnancies resulted when at least one unaffected blastocyst was available for transfer [89–91]. These findings agree with those of Gianaroli et al who describe pregnancy chances below 10% in cycles lacking unaffected embryos, whereas they estimate a 30% pregnancy rate for couples with at least two euploid embryos in their first cycle [75, 79].

As women currently seeking fertility treatment are, for an essential part, in their thirties and forties, aneuploidy screening could be a rather crucial additional benefit for their cycles [92–94]. Screening for chromosomal anomalies in patients who have been demonstrated as at risk for genetic defects that might further impair their already reduced chances for pregnancy and increase their risk of a genetically affected child, therefore, appears like a reasonable approach if such additional services can be integrated into IVF cycle costs at a reasonable additional cost [78, 95].

Future Aspects in Reproductive Medicine

One of the major challenges of current ART lies undoubtedly in its transition from being a treatment concept for a small group of patients to serving a much broader clientele, inclusive of a rapidly increasing number of couples of advanced reproductive age seeking for offspring [4].

Though in-vitro fertilization has proven extraordinarily successful through up to the birth of over one million children, stimulation regimens, currently still applied to patients with comparatively impaired chances for pregnancy, reveal weak spots in today's fertility treatments. Further research, therefore, appears mandatory to bridge this gap.

Improved knowledge on promoters and interactions, involved in follicular growth prior to gonadotrophin dependency, might disclose future treatment approaches in women with diminished ovarian reserve. Animal models in transgenic mice, for instance, have revealed various regulators of early follicular development, including growth differentiation factor 9, BAX1, BCL2 and Wilm's tumor gene. Though these factors are believed to either have stimulatory or inhibitory function in the initiation of oocyte development, little is known about their specific physiological role in the regulation of early follicular growth [96].

Henderson and Edwards, among others, demonstrated a relation between the age-related reduction of meiotic crossing-over and aneuploidy in women of advanced age. If oocytes with higher meiotic recombination frequency – which appears advantageous for appropriate chromosomal segregation – are destined to ovulate first, as they assume, the impact of external modulation of oocyte selection prior to gonadotrophin dependency would be well demonstrated. Beside follicular growth, oocyte maturation appears crucial in IVF. Better insight into the factors and modulators involved might, therefore, reduce the need to dispose of oocytes.

The process of fertilization plays an important role in the development of pre-implantation embryos. And it is important to note that not only female chromosomes are susceptible to damage. Indeed, the insertion of the paternal genome at time of fertilization may raise additional questions.

For example, etiologies for the so-called OAT-syndrome (oligo-astheno-teratozoospermia) deserve extensive study to generate a wider assortment of treatment options and to reliably assess paternally derived genetic risks in offspring. Whether children conceived by intracytoplasmatic sperm injection (ICSI) are, in fact, at higher risk for malformations awaits further study [97, 98]. Though ICSI enables a majority of infertile men to conceive genetically related offspring, it does not afford solution for all male disease patterns. Haploidization of male somatic cells might represent a future concept for severe forms of male sterility [99–101].

Implantation is the least currently understood process of human reproduction [102, 103]. At present, little is known about modulating factors that synchronize embryo and endometrium to allow for successful nidation [104]. Uterine vascularization and immuno-modulation appear to play a decisive but yet underestimated role in in-vitro fertilization. Though many underlying mechanisms of uterine receptivity so far have remained a mystery, an age-related decline appears likely. Luteal phase support in women of advanced reproductive age is, therefore, ascribed increasing importance.

Medication is another sector of interest in assisted reproduction that requires consideration [105]. Controlled ovarian hyperstimulation currently requires daily subcutaneous or intramuscular medications for weeks, a cause of considerable inconvenience for patients. Non peptide GnRH agonists and antagonists, that permit oral administration, are currently under evaluation to simplify fertility treatment [106].

Another difficulty with stimulation compounds, available at present, lies in their limited duration of effectiveness which, therefore, requires repeated daily administration. Long acting FSH, or sustained release FSH, with extended half-life compared to recombinant FSH (95 hours vs. 28 hours) would further contribute to a future of a more ‘friendly’ IVF cycle [106].

New treatment approaches may also become possible through the use of aromatase inhibitors which are assumed to activate positive feedback mechanisms at the pituitary level without negatively influencing estrogen receptors [106]. Serum estrogen concentrations could, thereby, be reduced to allow for physiologically adjusted stimulations.

Embryology plays a decisive, and still increasing, role in modern assisted reproduction. Microbiological advancement of culture conditions might facilitate enhanced cultivation to minimize cleavage arrest and to improve morphological embryo selection. Furthermore, a rational basis for complete karyotyping, using comparative genomic hybridization, could be provided.

Successful in-vitro fertilization is in an essential part subject to temporal constraints [106–108]. Cryopreservation sets the stages for wider scopes in fertility treatment that go beyond germ cell conservation. Single embryo transfer, genetic screening, stem cell storage and ovarian tissue banking are just some future areas in ART that require safe and efficient cryopreservation techniques.

Ovarian tissue banking is regarded as one of the most promising areas in to-be assisted conception. Initially intended for fertility preservation in cancer patients, scheduled for gonadotoxic radiation, autologous transplanted
ovarian tissue might, as well, yield hope for female fertil-
ity preservation in general. While other tissues of rapidly
dividing cells, such as bone marrow and the gastro-
intestinal tract have the capability of restoration, ovarian
tissue, where the number of germ cells is fixed since fetal
life, lacks regenerative ability [109].

Total or partial oophorectomy in years of reproductive
prime might, therefore, enable female procreation with-
out the pressures of time. In contrast to cryopreservation
of mature oocytes, that are susceptible to chilling injury,
cryopreservation at prophase I, when chromosomes are
not aligned along the spindle, is believed to result in mi-
nor risk for cytogenetic errors [110].

Recently, Bath et al reported on the first successful con-
ception in a young woman who had ovarian cortical tis-
sue cryopreserved before chemotherapy and radiotherapy
for a Ewing’s sarcoma of the pelvis. The patient had mul-
tiple biopsies of ovarian tissue cryopreserved for 5 years
before re-implantation at the age of 19. A spontaneous
conception occurred 1 year later and a healthy boy (birth
weight 2.9 kg, 3rd–10th centile) was delivered at term by
elective Caesarean section [111].

Data recently presented by Johnson et al could herald
future fertility treatment. The scientists discovered chal-
lenging evidence for ovarian stem cells in mice, implicat-
ing oocyte renewal throughout the reproductive years.
Though the occurrence of totipotent cells in human ova-
ries is just suggested so far, their existence could allow for
diametrically opposed treatment options in infertile cou-
ples. Assuming continual genesis and decay of human
oocytes, aneuploidy increase observed in women of ad-
vanced reproductive might be traced back to stem cell
aging or even death. If stem cells, indeed, exist in human
ovaries, knowledge on influencing factors of follicular
reproduction and development could allow for either
stem cell cryopreservation during prime or medical en-
hancement of flagging stem cell revival [112].

Extending fertility potential to older women appears one
of the great challenges. Increasing aneuploidy in women
of advancing reproductive age necessitates appropriate
screening tools for the selection of genetically normal
embryos – not only to improve pregnancy rates, but also
to allow for healthy singletons [113, 114].

The strategy currently applied to achieve pregnancy in
women aged 35 and above commonly utilized the trans-
fer of multiple embryos in the hope for ‘natural selection
in utero’ of genetically unimpaired embryos. Termination
of pregnancy in couples, in whom IVF has either resulted
in a fetal chromosomal abnormality or in pregnancy of
higher rank, however, often causes significant psycholog-
ical strains and feelings of guilt in would-be parents
and surviving twins [114, 115].

Responsible fertility treatment, however, has the duty to
minimize the risks associated with ART. To do this, the
number of oocytes transferred has to be minimized, ide-
ally to single embryo transfer in many, if not most, pa-
ients. Second, to ensure the implantation of only geneti-
cally normal embryos, PGD has to enter the routine IVF
process in a more coherent way.

Gleicher et al recently presented data on blastomere
transplantation between siblings to demonstrate integra-
tion and distribution of genetically normal blastomeres in
chromosomally affected early human embryos [116].
Though long-term animal models are needed to gain fur-
ther insight in the background mechanisms and implica-
tions of this discovery, it impressively depicts the chances
of genetic medicine. Undoubtedly, there are risks in-
volved, there are limits to be drawn. But for all that, regu-
lations in this field should be principally based on expert
opinion, serious discussion and reasonable skepticism
rather than constraints of abstract fear from the unknown.

References:

1. Meldrum DR. Female reproductive aging – ovarian and uterine
2. Sauer MV, Paulson RJ, Lobo RA. Pregnancy after age 50: applica-
tion of oocyte donation to women after natural menopause. Lancet
1993; 341: 121–3.
3. Sauer MV, Paulson RJ, Lobo RA. Reversing the natural decline
in human fertility: an extended clinical trial of oocyte donation to
4. Van Rooij IA, Bancsi LF, Broekmans FJ, Loonman CW, Habbema
JD, te Velde ER. Women older than 40 years of age and those with
elevated follicle-stimulating hormone levels differ in poor re-
spone rate and embryo quality in in vitro fertilization. Fertil Steril
6. Sharara FI, Scott RT Jr, Seifer DB. The detection of diminished
179: 804–12.
7. Garcia JE, Jones GS, Acosta AA, Wright GJ. HMG/HCG follicular
8. Surrey ES, Bower JA, Hill DM, Ramsey J, Surrey MW. Clinical and
endocrine effects of a microdose GnRH agonist flare regimen ad-
ministered to poor responders who are undergoing in vitro fertili-
R. Improvement of IVF outcome in poor responders by discontinu-
ation of GnRH analogue during the gonadotropin stimulation phase – a function of improved embryo quality. J Assist Reprod
Genet 2001; 18: 197–204.
10. Battaglia DE, Goodwin P, Klein NA, Soules MR. Influence of ma-
ternal age on meiotic spindle assembly in oocytes from naturally
11. Kligman I, Rosenwaks Z. Differentiating clinical profiles: predict-
ing good responders, poor responders, and hyperresponders.
responders in assisted reproductive technology: a challenge to
13. Toner JP, Philput CB, Jones GS, Muasher SJ. Basal follicle-stimu-
lating hormone level is a better predictor of in vitro fertilization per-
Leeuwen FE. A low number of retrieved oocytes at in vitro fertili-
tization treatment is predictive of early menopause. Fertil Steril
2002; 77: 978–85.
15. El-Toukhy T, Khalaf Y, Hart R, Taylor A, Braude P. Young age does
17. Meirov D. Reproduction post-chemotherapy in young cancer pa-
18. Hock DL, Sharafi K, Dagostino L, Kemmann E, Seifer DB. Contri-
tl 2003; 64: 87–92.
that male smoking affects the likelihood of a pregnancy following
IVF treatment: application of the modified cumulative embryo
34. Yong PY, Baird DT, Thong KJ, Mc Neilly AS, Anderson RA. Prospective analysis of the relationship between the follicle cohort and baseline FSH concentration, the inhibin response to exogenous FSH and ovarian follicle number at different stages of the normal menstrual cycle and after pituitary down-regulation. Hum Reprod 2003; 18: 35–44.

Mitteilungen aus der Redaktion

Besuchen Sie unsere Rubrik

✓ Medizintechnik-Produkte

Neues CRT-D Implantat
Intica 7 HFT QP von Biotronik

Artis pheno
Siemens Healthcare Diagnostics GmbH

Philips Azurion:
Innovative Bildgebungslösung

Aspirator 3
Labotect GmbH

InControl 1050
Labotect GmbH

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

✓ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung