Cellular Electrophysiological Changes in Rats with Heart Failure and Ventricular Arrhythmias - in Vitro-in Vivo Correlations

Blanc-Guillemaud V, Beck L, Champeroux P, Cherif OK
Davy JM, Richard S

Homepage:
www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Cellular Electrophysiological Changes in Rats with Heart Failure and Ventricular Arrhythmias – in Vitro-in Vivo Correlations

V. Blanc-Guillemaud1, L. Beck2, O. K. Cherif2, P. Champeroux1, S. Richard1, J.-M. Davy2

Aim of the study: During heart failure (HF), mechanisms of ventricular arrhythmias are poorly understood. The clinical relevance of elementary mechanisms suggested by in vitro experiments has to be questioned, since in vivo correlations are often lacking. We compared action potential (AP) characteristics, occurrence of automaticity, and triggered activity with in vivo arrhythmogenic, morphologic, and hemodynamic data in post myocardial infarction (PMI) rats.

Methods and results: Telemetric ECG, morphologic, and haemodynamic data were obtained from 16 live PMI and 13 sham rats, at one and five months after surgery. Action potentials (AP) were studied on the papillary muscle in different solutions, and at different pacing rates. Spontaneous ventricular premature beats (VPBs) were frequent in PMI and were bradycardia-dependent. Abnormal automaticity was the most common in vitro observed mechanism. Time after infarction was related to EAD/DAD in vitro distribution but not with in vivo data. HF induced major alterations of filling pressures and of AP characteristics. AP duration was strongly correlated with the size of infarction but not with the arrhythmic density, in contrast with AP amplitude, resting potential, and V max.

Conclusion: In PMI rats, abnormal automaticity was the major mechanism of in vitro recorded arrhythmias, consistently with the bradycardia-dependence of in vitro observed VPBs. Delay after infarction influenced only EAD/DAD proportion. In this model, AP prolongation could be a simple marker of HF not involved in arrhythmogenic mechanisms. Heterogeneity of the pathobiology of arrhythmias in HF warrants further in vitro-in vivo correlations. J Clin Basic Cardiol 2005; 8: 23–8.

Key words: experimental heart failure, ventricular arrhythmias, action potential duration, automaticity, DAD, EAD.

Although the incidence of most cardiovascular diseases has decreased during the past decades, the incidence and prevalence of congestive chronic heart failure has increased in the Western world [1]. Mortality remains very high and up to fifty percent of the deaths are considered unexpected [2]. The mechanisms of sudden death in patients with heart failure seem highly heterogeneous, even when the most frequent cause is ventricular tachyarrhythmia. These mechanisms however have to be more accurately investigated [3]. Among them, the specific weight of the alteration of different electrophysiological parameters by cardiac and peripheral responses is hardly known.

Clinical observations alone are unable to address these important issues. On the other hand, elementary mechanisms identified during in vitro experimental studies need the demonstration of their in vivo relevance. For example, prolongation of the action potential (AP) is a characteristic of cells and isolated myocardium from ventricles of animals with heart failure, independent of its etiology [4–6]. Recordings however made at unphysiologically slow rates and without physiological mechanical load conditions have questioned the clinical relevance of this observation [7]. Increased dispersion of AP duration has been described and has raised reentry as a major potential cause of ventricular arrhythmias. Moreover, other mechanisms have also to be considered. Abnormal automaticity and triggered activity – favoured by EADs or by DADs – have been shown in experimental conditions. However, the relationships between in vitro recorded ventricular arrhythmias and in vitro observations obtained on isolated cells or tissular preparations remain unclear. Finally, most of the studies have been performed in animals with cardiac hypertrophy but not necessarily with real heart failure. Nevertheless, mechanisms involved in ventricular arrhythmias might be completely different according to the stage of the disease [8–9].

The post myocardial infarction (PMI) rat is one of the most popular and most documented models of heart failure [10]. In a pioneer study, Qin et al. evaluated some electrophysiological parameters and arrhythmogenic mechanisms in PMI rats [11]. However, these observations have only been performed during the very early phase of ventricular remodelling, a process known to be time-dependent. Reentry, triggered activity, automaticity were suggested by the authors, but again relationships with in vivo spontaneous arrhythmias have not been analysed.

As we have demonstrated that spontaneous and chronic ventricular arrhythmias could be recorded by Holter monitoring in this model [12–13], the following points were addressed in our study:

- AP characteristics and their evolution with time were examined in the rat ventricular papillary muscle.
- Occurrence of after potentials, triggered activities, and automaticity in different biochemical conditions were assessed, one and five months after coronary artery ligation.
- Finally, we compared these results with arrhythmias recorded by telemetry in the same awake animals and with morphologic and haemodynamic parameters of failing hearts.

Population, Material, and Methods

A population of 35 rats surviving more than 48 hours after surgical procedure were divided into 4 groups. From the 22 rats undergoing coronary artery ligation, 7 (group PMII) were studied at 1 month after surgery for telemetric measurements, haemodynamic analysis, infarction size scoring, and cellular electrophysiological experiments. Nine were studied at 3 months (group PMIII). Six died between the first...
and the fifth month. From the 13 rats undergoing only a sham operation (same procedure except for the ligation), 6 were analysed at 1 month (group CTRL1) and 7 at 5 months (group CTRL5).

Surgical Procedure

Induction of HF was performed in male Wistar rats weighing 300–350 g. The animals were anaesthetised with a mixture of ketamine 150 mg/kg and xylazine 0.05 mg/kg. They were directly intubated and ventilated with room air at a rate of 60 ml/min. Body temperature was maintained at 37 °C using a thermostatically controlled blanket. The chest was opened by anterolateral thoracotomy and the pericardium was incised. The atria was removed and a 7-0 suture was passed around the origin of the major branch(es). Complete occlusion was evidenced by a regional color change of the myocar-dium and immediate dyskinesia. The lungs were re-expanded and before the skin was closed, air in the chest was removed. The rats were exsanguinotated and placed in an individual cage with ad libitum food, water, and a 12-hours day/night cycle. Sham-operated rats underwent an identical surgical procedure except for coronary artery ligation.

Telemetric Measurements

Ventricular arrhythmias were recorded at 1 month (n = 6) and 5 months (n = 9) in rats undergoing coronary artery ligation. One day before the electrophysiological study, animals were anaesthetised again and a telemetric transmitter TL11M2-C50-PXT (DSI, St. Paul, Minnesota) was placed subcutaneously in an abdominal position for the recording of electrocardiogram (lead II) by telemetry. Measurements were undertaken in the animal room by means of a RLA bio-receiver (DSI, St. Paul, Minnesota) placed under the cage. The electrocardiogram was recorded for 30-second periods at regular intervals of 15 minutes for 24 hours (total recording 48 minutes). Arrhythmias were counted by the same operator. Results were extrapolated as a mean of ventricular premature beats (VPBs) per hour. Rats with more than 100 VPB/hours were considered "arrhythmic rats".

Heart Failure Evaluation

Left ventricular end-diastolic pressure (LVEDP) was measured in all rats immediately before the sacrifice. Animals were anaesthetised as described above. A polyethylene catheter connected to a STATHAM P23XL transducer and filled with isotonic saline solution was introduced into the right carotid then via the aorta into the left ventricle. LVEDP was considered increased if the measured value was more than 15 mmHg. After this haemodynamic measurement, the heart was quickly removed and placed in an oxygenated Tyrode’s solution. A score of necrosis was determined by macroscopic observation. The surface of the antero-lateral wall of the left ventricle was grossly divided into 6 parts: 3 paraseptal (apical, median, basal) parts and 3 lateral (apical, median, basal) parts. Depending on the number of infarcted segments, a score of 1 to 6 was applied. The papillary muscle was then excised from the left ventricle and immerged in the Tyrode’s solution.

Electrophysiological Studies

Three different Tyrode’s solutions were used: normal Tyrode’s (Tyrode’s 1), Tyrode’s with low potassium (2.0 mM), low magnesium (0.25 mM), and calcium (10^{-6} M) (Tyrode’s 2) to favour EADs induction and Tyrode’s with iso-proterenol (10^{-5} > M) and ouabain (10^{-6} > M) (Tyrode’s 3) to favour DADs induction. The composition of normal Tyrode’s was: NaCl 135.7 mM, KCl 4, NaHCO3 – 24; MgCl2 0.5; CaCl2 2.7; NaH2PO4 – 1.8; glucose 5.5. Experimental Protocol Papillary muscles were placed in a 5 ml bath and were constantly irrigated with the oxygenated Tyrode’s solution at a rate of 2 ml/min. The bath temperature was maintained at 36.5 ± 0.5 °C. Simulation pulses were delivered through insulated wires to the papillary muscle. The pulse duration was 2 ms with an amplitude 2-fold of the diastolic threshold. Transmembrane action potential was measured using glass microelectrodes filled with 3M KCl and having a tip resistance of 10–30 MΩ. The microelectrode was coupled via a holder SM002 to a microelectrode amplifier VF180 (Biologic, Claix, France). Transmembrane potentials were monitored and recorded using a personal computer with a Datapac acquisition system (Bio-logic, Claix, France). Simultaneously, action potentials were printed on paper (Gould 8000S recorder). Papillary muscles were equilibrated by stimulations at 1 Hz for 2 hours. Up to 20 impalements were made from different locations in the papillary muscle to obtain cellular action potentials. Analysis of electrophysiological parameters included action potential duration at 50 % and 90 % of repolarisation (APD50, APD90), action potential amplitude (APA), resting potential (RP), and maximum rate of rise of phase 0 (Vmax). In addition, to obtain a relation between APD and cycle length, the following pacing protocol was tested. We stimulated the muscle at cycle lengths of 10,000, 5000, 1000, 330, and 200 ms for 3 minutes. Every 3 min. train was followed by 20 s pauses. Trains of 5, 10, 15, and 20 stimuli at 3 Hz followed by 2 min. pauses were also tested. These two pacing protocols were consecutively performed for each preparation in Tyrode’s 1, 2, and 3 solutions.

Analysis of Data

EAD was defined by a change in the time course of repolarisation of an action potential characterised by an oscillation potential that begins prior to the completion of repolarisation. When an abnormal unique or multiple action potential occurred following an EAD it was defined as an EAD triggered activity. DAD was defined by an oscillation in membrane potential that occurred after repolarisation was completed. Action potentials induced by a train of stimuli were defined as DAD triggered activity. Automaticity was defined as a spontaneous generation of regular sequence of actions potentials, independently of any paced sequence. We used Student’s t-tests for independent samples or Kruskall/Wallis non-parametric tests to compare PMI/SHAM groups or smaller groups, respectively, and simple regression tests. The value p = 0.05 was chosen as the significance threshold. Results were expressed as mean ± standard deviation.

Results of in vivo Measurements

Only rats surviving 48 hours after coronary artery ligation have been considered. No death occurred in PMI1, CTRL1, and CTRL5 groups. However, chronic mortality was very high (6/15, 40 %) in infarcted rats surviving after the first month. Heart failure was validated by a significant increase of left filling pressures in PMI compared with CTRL rats. Left ventricular end-diastolic pressure (LVEDP) was measured only in 67 rats in the PMI1 group and in 79 rats of PMI5 group, because 3 rats with high cardiac enlargement died immediately after anaesthesia. LVEDP was 22.3 ± 9.0 mmHg in PMI (range 10–40) and 5.2 ± 3.1 mmHg (range 2–10) in CTRL groups, respectively (p < 0.05). The infarction size score ranged between 3/6 and 5/6 in PMI rats (± SD). The scar could involve all left ventricular segments but were significi-
cantly larger in the apex region with large transmural surface areas and calcified fragments. No necrosis was observed in the septum. ECG could be recorded in only 6/7 rats of the PMI1 (one rat died after anaesthesia) and in 8/9 rats of the PMI5 (bad quality of the ECG signal in 1 rat). Telemetric measurements evidenced isolated VPBs without doublets or ventricular tachycardias (Figure 1). Mean density per hour was 970 ± 1671 VPBs (range 6–4705). This VPBs score might have been slightly influenced by the delay after infarction even if the difference was not statistically significant: 277 ± 352 VPBs in PMI1 and 1491 ± 2091 VPBs in PMI5 groups, respectively (p = 0.18). A strong and negative relationship was evidenced between the heart rate and the VPBs score.

Spontaneous arrhythmias appeared to be highly bradycardia-dependent. In each rat, VPBs density was assessed every 15 minutes for 30 seconds. Mean heart rate was measured during this recording. When data from all 14 rats were pooled, HR and VPBs were negatively and significantly correlated (p < 0.01). In all rats beside one (almost no arrhythmic rat), the slope of the linear regression between VPBs and heart rate was always negative. The mean value of this slope for all rats was significantly different from zero (p < 0.05).

No difference was seen in PMI1 and PMI5 groups for the necrosis score (4.4 ± 0.7 vs. 4.3 ± 0.7) or for the LVEDP (21.7 ± 9.3 mmHg vs. 22.9 ± 9.5 mmHg). When it was obtained, LVEDP was also similar in the 2 SHAM groups (3.8 ± 1.6 mmHg in CTRL1 and 4.2 ± 2.1 mmHg in CTRL5, respectively). Finally, no correlation could be established between VPBs score, necrosis score or LVEDP (Tab. 1).

![Example of lead II ECG recorded by telemetry from a rat of PMI5 group. Note the presence of frequent spontaneous VPBs.](image)

Figure 1. Example of lead II ECG recorded by telemetry from a rat of PMI5 group. Note the presence of frequent spontaneous VPBs.

Table 1. Characteristics of action potentials as a function of LVEDP, necrosis score and arrhythmias

<table>
<thead>
<tr>
<th></th>
<th>LVEDP < 20 mmHg</th>
<th>LVEDP > 20 mmHg</th>
<th>necrosis score > 4</th>
<th>necrosis score > 4</th>
<th>VPBs < 100 VPB/hours</th>
<th>VPBs > 100 VPB/hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMI1</td>
<td>98 ± 4.3</td>
<td>102 ± 5.9</td>
<td>98 ± 4.5</td>
<td>103.8 ± 5.4</td>
<td>98 ± 4.3</td>
<td>102 ± 5.9</td>
</tr>
<tr>
<td>PMI5</td>
<td>104 ± 4.7</td>
<td>101 ± 6.4</td>
<td>98 ± 8.1</td>
<td>94.8 ± 17.8</td>
<td>104 ± 5.6</td>
<td>88 ± 15.2</td>
</tr>
<tr>
<td>RP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−74 ± 5.1</td>
<td>−75 ± 4.8</td>
<td>−74 ± 4.9</td>
<td>−76 ± 5.0</td>
<td>−74 ± 5.1</td>
<td>−75 ± 4.8</td>
</tr>
<tr>
<td></td>
<td>−79 ± 6.9</td>
<td>−78.1 ± 6.8</td>
<td>−78 ± 6.8</td>
<td>−75 ± 8.9</td>
<td>−81 ± 6.2</td>
<td>−72 ± 7.1</td>
</tr>
<tr>
<td>Vmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>158 ± 29.4</td>
<td>171 ± 27.7</td>
<td>165 ± 28.9</td>
<td>166 ± 29.4</td>
<td>158 ± 29.4</td>
<td>171 ± 27.7</td>
</tr>
<tr>
<td></td>
<td>199 ± 39.5</td>
<td>179 ± 48.7</td>
<td>182 ± 53.8</td>
<td>189 ± 48.9</td>
<td>196 ± 42.0</td>
<td>164 ± 59.1</td>
</tr>
<tr>
<td>APD90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 ± 15.5</td>
<td>19 ± 8.7</td>
<td>11 ± 3.9</td>
<td>34.6 ± 8.1</td>
<td>20 ± 15.5</td>
<td>19 ± 8.7</td>
</tr>
<tr>
<td></td>
<td>18 ± 3.3</td>
<td>21 ± 8.7</td>
<td>29 ± 7.4</td>
<td>48 ± 14.8</td>
<td>21 ± 8.6</td>
<td>16 ± 6.1</td>
</tr>
<tr>
<td>APD50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38 ± 33.6</td>
<td>31 ± 8.2</td>
<td>19.9 ± 8.0</td>
<td>60 ± 20.5</td>
<td>38 ± 33.6</td>
<td>31 ± 8.2</td>
</tr>
<tr>
<td></td>
<td>35 ± 8.2</td>
<td>44.3 ± 16.5</td>
<td>29 ± 7.4</td>
<td>74 ± 14.8</td>
<td>43 ± 16.8</td>
<td>31 ± 10.4</td>
</tr>
<tr>
<td>APD90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110 ± 52.1</td>
<td>119 ± 18.9</td>
<td>95 ± 30.9</td>
<td>154 ± 20.7</td>
<td>110 ± 52.1</td>
<td>119 ± 18.9</td>
</tr>
<tr>
<td></td>
<td>−79 ± 6.9</td>
<td>145 ± 16.7</td>
<td>119 ± 17.6</td>
<td>154 ± 14.1</td>
<td>134 ± 27.4</td>
<td>134 ± 20.2</td>
</tr>
</tbody>
</table>

APA = action potential amplitude; RP = resting potential; APD = action potential duration at 30, 50 and 90% of repolarisation. LVEDP: left ventricular end-diastolic pressure. VPB = ventricular premature beat. Data given as mean ± standard deviation.

Action Potential Characteristics in Failing and Control Rats

Action potential parameters are shown in Table 1. Measurements were mostly similar in the twenty measures. For example, the mean variation index (standard deviation/mean) of APD90 was 0.15 ± 0.02, 0.11 ± 0.02, 0.17 ± 0.04, and 0.08 ± 0.01 for CTRL1, PMI1, CTRL5, and PMI5, respectively. Therefore, for each rat, each value was the average of 20 im-

Heart failure induced major alterations in the cellular electrophysiological parameters. The most prominent changes concerned the duration of APs. Mean APD90 and APD50 were 49 ± 14 ms vs. 128 ± 31 ms and 10 ± 2 ms vs. 37 ± 19 ms for CTRL (1 + 5) and PMI (1 + 5), respectively (p < 0.001). Vmax was highly modified as well, the amplitude of AP was decreased and the resting potential mildly increased (p = 0.001, 0.11, and 0.06). Moreover, the strong correlations observed between these parameters provided heavy validation of these results. Regression analysis was authorised by the small overlap of values from the SHAM and PMI groups. For example, negative (with APD90, APD50, and RP) or positive (with APA) correlations were shown between Vmax and the 4 other parameters tested here (p-values: 0.007, 0.02, 0.02, and 0.01, respectively). The resting potential significantly increased, as well, with the decrease of AP amplitude (p < 0.001).

APD90 and APD50, but no other electrophysiological parameters, were strongly related to the size of infarction (necrosis score, p = 0.003, and 0.001, respectively). The VPBs density was highly related to AP amplitude (p = 0.04) and a trend was noted between this arrhythmic score, the resting potential (p = 0.07), and Vmax (p = 0.09). For example, in group PMI5, rats with more than 100 VPBs/hour showed 88 ± 15 mV vs. 104 ± 5.6 mV for the AP amplitude, −72 ± 7 mV vs. −81 ± 6 mV for the resting potential, and 164 ± 59 V/s vs. 196 ± 42 V/s for the Vmax compared with less arrhythmic rats, respectively. No relationship was found between these parameters and the severity of filling pressures (LVEDP; p = 0.45, 0.70, 0.53, 0.41, and 0.82, respectively). Moreover, differences observed between 1 and 5 months values of APD90, APD50, APA, RP, and Vmax were not significant (120 ± 40 ms vs. 134 ± 22 ms, 37 ± 25 ms vs. 37 ± 14 ms, 100 ± 4 mV vs. 96 ± 13 mV, −75 ± 2 mV vs. −77 ± 6 mV, 145 ± 15 V/s vs. 185 ± 27 V/s, respectively, for PMI1 and PMI5).
APD90 as a Function of Basic Cycle Length in Failing and Control Rats

Figure 2 summarises results of AP duration rate dependence in groups CTRL1, CTRL5, PMI1, and PMI5. For each stimulation rate, APD90 was significantly increased in the failing myocardium group compared with the control group. Moreover, an increase of APD90 at 0.1 Hz was observed in PMI5 when compared with PMI1, but the difference was not statistically significant. Nevertheless, as we observed irreversible automaticity or EAD at a slow stimulation rate, three rats from the PMI5 were excluded from the results. At 0.5 Hz and faster stimulation rates, APD90 prolongation were similar in PMI1 and PMI5 groups. Rate-induced reduction of APD was considerably more pronounced in failing than in normal hearts. The estimated slope of the curve APD90/cycle length was 28.5 and 38.5 in PMI1 and PMI5, respectively, vs. 8.2 and 10.7 in CTRL1 and CTRL5.

After-Depolarisations, Triggered Activity, and Automaticity

DAD were never observed in CTRL rats. DAD occurred in PMI1 in Tyrode’s 2 solution containing low potassium, low magnesium, and caesium and following a train of stimulation. Figure 3 illustrates a DAD following a train of 20 stimuli at 3 Hz. The first action potential reached a threshold producing a triggered activity. The final oscillation (15 mV) recorded is a DAD that failed to reach a threshold. Four of the seven PMI1 gave rise to triggered activity following 5, 10, 15, and 20 pulses at 3 Hz. This triggered activity persisted less than two minutes and was not followed by an apparent DAD. Only one PMI5 presented DADs after a train of 10 and 15 pulses in normal Tyrode’s solution.

CTRL and PMI1 preparations failed to show either EAD at any cycle length in either Tyrode’s solution. APD90 was particularly increased at 0.1 Hz during which EADs developed in five PMI5 preparations in normal Tyrode’s solution. When the stimulation rate was increased from 0 to 5 Hz, EADs could still be induced in only one PMI5 at 0.5 and 1 Hz. In conditions which favoured EADs (low potassium, low magnesium, and caesium), EADs occurred in five PMI5 at 0.1 and three PMI5 at 0.5 Hz. EADs were observed in three PMI5 during the 2 minutes of quiescence between two trains of stimulation. The first upstroke was spontaneous and EADs induced triggered activity in all cases (Fig. 4).

Abnormal automaticity was the most commonly recorded arrhythmia. Figure 5 summarises the occurrence of spontaneous activity induced at different cycle lengths and in different Tyrode’s solutions. In normal Tyrode’s and at low frequency (0.1 Hz), automaticity was very frequent in PMI1 (5/7) and PMI5 (7/9). At this frequency, however, some CTRL rats also displayed automaticity (1/6 and 2/7 at 1 and 5 months, respectively, but the difference was very significant). When the stimulation rate increased, automaticity decreased in all groups. At 5 Hz, automaticity was never observed. Spontaneous activity could be stopped by rapid stimulation.

Figure 2. AP duration (APD 90) as a function of basic cycle length in the 4 groups (CTRL1, CTRL5, PMI1, PMI5).

Figure 3. Illustration of a DAD following a train of 20 stimuli at 3 Hz. The first action potential reached threshold producing a triggered arrhythmia. The final oscillation (15 mV) is a DAD that failed to reach threshold.

Figure 4. Illustration of an EAD that occurred during the 2 minutes of quiescence between 2 trains of stimulation. Abnormal sustained rhythm develops after the second action potential with EAD.

Figure 5. Proportion of automaticity in rats of the 4 groups at different pacing rates (0.1–5 Hz) in modified Tyrode’s solution.
The cycle length of automatic rhythm varied constantly, increasing and decreasing beat by beat and it was not possible to identify a single value. Mean automatic cycle length, however, varied from 4 to 200 ms with the most frequent values in the range 300–400 ms. This phenomenon appeared similar in PMI1 and PMI5. In modified Tyrode’s solution, automaticity increased in all groups and was even recorded at 5 Hz. When isoproterenol and ouabain were added (Tyrode’s 3), up to 100 % of failing myocardium displayed automaticity at low frequencies (0.1 and 0.5 Hz).

Because of the relatively small number of preparations, results were then pooled with the 3 Tyrode’s solutions to test potential correlations of occurrence of EAD, DAD, and automaticity with the other parameters of the study. For example, each rat would have been considered positive for EADs, if one or more EAD had been induced in either of the 3 solutions. Strong relationships were shown between EADs, DADs occurrence and the delay after infarction. More DADs were observed at one month, 5/7 rats vs. 1/9 at 5 months (p = 0.003). On the contrary, more EADs were seen at 5 months (6/9 vs. 0.7/1 at month, p = 0.01). EADs and abnormal automaticity seemed more frequent in arrhythmic rats (more than 100 VPBs/h).

Discussion

Main Results of the Study

The major goal of our work was to analyse correlations between cellular electrophysiological in vitro changes induced by heart failure and in vivo arrhythmic, morphologic and haemodynamic data from live animals (VPBs density, necrosis score, LVEDP), according to the delay after infarction. As yet, such a correlation has only been reported in rabbits with heart failure [7–24]. To our knowledge, these relationships have been investigated in rats for the first time in our study. We used a very popular rat model of heart failure in which we have documented very frequent spontaneous and chronic arrhythmias [12–13]. This model was characterised by predominance of ventricular dilatation over hypertrophy [14–15]. Observations consistent with data obtained in human heart failure have suggested its clinical relevance [16].

The main results of this study can be summarised as follows:

- Abnormal automaticity was found to be the major mechanism of arrhythmias recorded in muscle preparations. Their occurrence was so high that other mechanisms might have been underestimated. Nevertheless, the very clear bradycardia-dependent characteristics of in vitro recorded arrhythmias had already been observed in another study from our lab and could be consistent with the predominance of an automatic mechanism in this post-infarction rat model [13, 17].
- The arrhythmic score on Holter recordings was found related only to changes in AP amplitude, resting potential and Vmax, which are indexes of severe cell alterations but, surprisingly, not to AP duration modifications, which is the major electrophysiologic alteration described in the literature. Nevertheless, AP lengthening was observed and correlated with infarction size. This result could have consequences on our understanding of the genesis of arrhythmias.
- Although infarction geometry or arrhythmias could be connected to AP measurements, the influence of the delay after infarction or of filling pressures – two well-known parameters of ventricular remodeling – appeared less clear. However, DADs were more frequent at 1 month than later. On the contrary, EADs were observed only after 5 months.

Methodological Considerations

In this post-infarction rat model, we aimed to correlate in vitro and in vivo data. The pathophysiological significance of in vitro studies of ventricular arrhythmias, in a number of yet, because of the lack of in vivo related data [5]. The clinical relevance of AP modifications observed at stimulation rates significantly lower than physiological rates, or in animal models without any in vivo arrhythmia, has to be questioned. For example, AP duration lengthening and changes in ionic currents have been described in the Syrian hamster with dilated cardiomyopathy [18]. However, Holter monitoring demonstrated clearly that death in this model was induced by a progressive cardiac rate decrease rather than arrest [19]. Moreover, no ventricular arrhythmias were ever seen on continuous recordings. Cellular electrophysiological modifications could in this case only be markers of heart failure and not a cause for sudden death or even arrhythmias.

In our study all PMI rats showed large infarction scars; all rats presented with VPBs. LVEDP was always more than 10 mmHg in PMI rats and less than 10 mmHg in sham rats. AP characteristics were strongly modified by heart failure. A strong validation of our results was provided by repeated measurements (20 data per preparation), by highly significant correlations between the 5 cellular electrophysiological parameters (APD90, APD50, APA, RP, Vmax) and by the low variability of measured parameters. For these reasons, the surprising correlation between in vivo arrhythmias and AP amplitude (and the lack of relationship with AP lengthening) cannot be due to artefacts.

Potential Mechanisms of Ventricular Arrhythmias

Few studies are available in the literature concerning the electrophysiologic remodeling of infarct-induced heart failure in the rat. Santos described ventricular AP and L-type calcium channels in this model, one to two months after infarction. He described a decrease in the current density, independent of the AP lengthening [20].

AP duration (APD) changes might be involved in reentry processes, particularly when an important dispersion of APD between different areas of the ventricle was noted. Enhancement of interregional variations has been suggested in hypertrophied hearts [5]. Qin et al., in the same model of post-infarction rat, reported intramura differences between epicardial and endocardial areas. Both APD25 and APD50 were significantly longer in epicardial post-MI cells [11] (p < 0.01). These data, nevertheless, were obtained in the very early phase of ventricular remodeling (3 weeks). Induced arrhythmias were obtained but spontaneous VPBs were not available. AP characteristics were reported from isolated cells and not from tissue preparations. Regional differences have been checked in our laboratory and reported elsewhere [21]. Myocytes isolated from lateral free wall, septum, apex of the left ventricle, and from the right ventricle showed no difference in the cell dimensions. Basal L-type Ca2+ did not exhibit regional dependence neither in control nor after infarction. As in other models of heart disease in rats Ip was significantly decreased but the basal heterogeneity of Ip density was not enhanced by the disease, with the right ventricular cells showing the largest values [22]. In our study, intra-individual measurements concerned 20 different impalements in the papillary muscle. Inhomogeneity was evaluated by the coefficient of variation and did not exceed 17 %. However, all regions of the left ventricle were not involved. Finally, a reentry process, in this model, could be favoured by mechanisms other than AP dispersion, like inhomogeneous fibrosis or...
Consistency of some in vivo and in vitro results suggests that the variability of arrhythmic mechanisms described in HF is not only induced by methodological artefacts but reflects heterogeneity in the pathobiology of the disease. In the post-infarction rat model of heart failure, automaticity seems to represent the major mechanism for recorded ventricular arrhythmias. AP lengthening might be only a marker of the disease. Further in vitro-in vivo studies are warranted, with the aim to understand sudden death mechanisms as closely as possible.

References:
Besuchen Sie unsere
zeitschriftenübergreifende Datenbank

✔ **Bilddatenbank** ✔ **Artikeldatenbank** ✔ **Fallberichte**

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.

Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.

Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

✔ **Bestellung e-Journal-Abo**

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum **Disclaimers & Copyright** **Datenschutzerklärung**