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 Noch vor einigen Jahren – mit der Entdeckung der ersten
Epilepsiegene – betitelte das Magazin „Nature Gene-

tics“ einen Review über Epilepsiegenetik mit der Über-
schrift „Chinks in the armour“. Mittlerweile könnte man
von ersten Löchern (statt Kratzern) in der Ritterrüstung
sprechen, da es zwischenzeitlich zu rasanten Fortschritten
auf diesem Gebiet gekommen ist [1–4]. Die gewonnenen
Erkenntnisse erlangen nun – wenn auch noch langsam –
Relevanz in der klinischen Praxis. Grundlegende Verände-
rungen in der Behandlung von Epilepsien stehen uns aber
vermutlich noch bevor. Thema dieses Artikels soll es vor
allem sein, diese klinisch relevanten Erkenntnisse zusam-
menzufassen und eventuelle zukünftige Entwicklungen
aufzuzeigen. Für eine genauere Besprechung der einzel-
nen genetisch bedingten Epilepsiesyndrome sei der Leser
auf die zitierte Literatur verwiesen.

Vom Standpunkt des an der genetischen Ätiologie interes-
sierten Klinikers lassen sich Epilepsien pragmatisch in drei
Gruppen gliedern. Am häufigsten ist man in der klinischen
Routine mit sogenannten komplexen Epilepsien konfron-
tiert, für die sich auch der englische Ausdruck „common
epilepsies“ etabliert hat. Mit der zweiten Gruppe sind Epi-
lepsien gemeint, die phänotypisch den „gewöhnlichen“,
komplexen Epilepsien gleichen, aber einen monogeneti-
schen (Mendelschen) Erbgang aufweisen. Im dritten Fall
liegen Erkrankungen mit Mendelschem Erbgang vor, die
neben epileptischen Anfällen auch andere prominente kli-
nische Symptome oder Befunde aufweisen, die eventuell
wegweisende Indizien für die weitere Abklärung liefern.

Genetik komplexer Epilepsien

An erster Stelle seien hier die komplexen, d. h. ätiologisch
polyfaktoriellen, Epilepsiesyndrome angeführt, da die
überwiegende Zahl aller Epilepsiepatienten an solchen
Syndromen leidet. Zu dieser Gruppe zählen vor allem die
als idiopathisch oder kryptogenetisch bezeichneten Epi-
lepsien [5]. Allerdings dürfte auch bei den meisten sym-
ptomatischen Epilepsien eine komplexe genetische An-
fallsbereitschaft vorbestehen, die bei zusätzlicher umwelt-
bedingter Läsion zur Manifestation einer Epilepsie dispo-
niert. Der Gesamtanteil genetischer Faktoren an der Ätio-
logie verschiedener komplexer Epilepsiesyndrome (die

sogenannte Heredibilität) wird im Durchschnitt auf bis zu
80 % – also sehr hoch – eingeschätzt [6–8]. Dabei geht
man von der Vorstellung aus, daß bei jedem Patienten
viele unterschiedliche Gene zur Entstehung der Erkran-
kung  beitragen. Der Anteil eines einzelnen Gens an der
Erhöhung des Gesamtrisikos dürfte zwar klein sein, durch
die Interaktion mehrerer Risikogene miteinander und mit
Umweltfaktoren kommt es aber letztlich zur Überschrei-
tung der Erkrankungsschwelle (Abb. 1).

Das molekulare Substrat dieser genetischen Risikofaktoren
ist keine klassische Mutation, sondern funktionelle Gen-
variationen – zumeist in Form von SNPs („single nucleo-
tide polymorphisms“) oder VNTR-Polymorphismen („vari-
able number tandem repeats“).

Im Gegensatz zu klassischen Mutationen gehen solche
Polymorphismen mit einer nur leichten (aber entscheiden-
den) Veränderung im Expressionsniveau oder in der Funk-
tion des Genproduktes einher. Allerdings ist die Funktiona-
lität solcher Polymorphismen nicht leicht vorherzusehen,
zumal sie oft in intronischen oder sonstigen regulatori-
schen, nicht kodierenden Genabschnitten sitzen. Aus die-
sem und mehreren anderen Gründen ist es bisher nicht ge-
lungen, viel konkrete Information über einzelne Polymor-
phismen in der Epilepsie zu sammeln, sodaß dieser Be-
reich der Epilepsiegenetik noch keine klinische Relevanz
erlangt hat. Das Haupthindernis zur weiteren Erforschung
besteht zur Zeit vor allem im Mangel an ausreichend gro-
ßen und klinisch gut dokumentierten Patientenkollektiven,
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die wiederum nur durch die aktive Mitarbeit vieler klini-
scher Zentren zusammengetragen werden können, was
zur Zeit aber leider kaum geschieht [9]. Die derzeitigen
Forschungsbemühungen laufen auf drei Hauptfragen hin-
aus [8–10]:
1. Welche und wie viele Genorte spielen als Risiko-

faktoren für komplexe Epilepsien eine Rolle? Einige der
interessanten Kandidaten-Polymorphismen sind in
Tabelle 1 aufgelistet. Vermutlich werden hier neben
Ionenkanalgenen in Zukunft auch regulatorische Gene
Bedeutung erlangen. Über die Zahl der relevanten
Gene können derzeit nur Vermutungen angestellt wer-
den, die meisten Experten gehen von mehreren Dut-
zend bis einigen hundert relevanten Genorten aus.

2. Die Größe des Geneffekts dürfte nach den bisherigen
Erfahrungen für die meisten Polymorphismen unter
dem Faktor 2 liegen, d. h. das Risiko einer Epilepsie
wird bei Vorliegen des Risikoallels um weniger als das
Doppelte erhöht. Allerdings ist es wahrscheinlich, daß
beträchtliche nichtlineare (sogenannte epistatische)
Interaktionen zwischen Risikogenen bestehen dürften,
sodaß sich das Risiko für eine Epilepsie bei Zusammen-
treffen mehrerer prädisponierender Allele exponentiell
erhöht.

3. Relevant ist auch die Frage nach der Häufigkeit der
Risikoallele in der Bevölkerung. Nach der vielerorts
akzeptierten „common disease/common variant“-Hypo-
these gibt es pro Genort nur wenige Risikoallele von
Bedeutung, diese sind aber relativ weit verbreitet (mit
jeweils über 5–10 % Populationsfrequenz) [19].

Auch wenn die Erforschung von Genvariationen in der Epi-
lepsie noch keine klinische Relevanz erreicht hat, ist anzu-
nehmen, daß wir über kurz oder lang diese Risikopolymor-
phismen erkennen und sie auch in der klinischen Routine
bestimmen werden, um für individuelle Patienten ein Risi-
koprofil zu ermitteln [20]. Als möglicher Vorbote einer sol-
chen zukünftigen Entwicklung könnte der sogenannte
AmpliChip genannt werden, ein Genchip zu Ermittlung
des individuellen Medikamentenmetabolismus im Zyto-
chromoxidase-System, der bereits Einzug in Routinelabors
gefunden hat [21].

Monogenetische Epilepsien

Diese zweite Gruppe umfaßt jene Epilepsien, für die
bereits ursächliche Mutationen in einzelnen Genen gefun-
den werden konnten oder bei denen zumindest starke
Hinweise auf Hauptgeneffekte bestehen. Abgesehen von

der auffällig positiven Familienanamnese sind solche
Epilepsien auf klinischer Ebene kaum oder gar nicht von
komplexen Epilepsien zu unterscheiden. Bei den Gen-
defekten handelt es sich zumeist um klassische Mutatio-
nen (z. B. „missense“- oder „frame-shift“-Mutationen), die
mit einem kompletten Funktionsverlust oder einer sonsti-
gen schwerwiegenden Funktionsstörung des Genproduk-
tes einhergehen, aber selten auftreten. Diese Mutationen
sind für sich alleine genommen ausreichend, um die Er-
krankung zu verursachen, woraus sich der monogeneti-
sche Erbgang erklärt (Allerdings spielen auch hier modula-
torische Einflüsse anderer Gene, die z. B. die Penetranz auf
weniger als 100 % herabsetzen, in der Realität immer eine
Rolle. Der Übergang zu komplexen Epilepsien ist daher in
Wirklichkeit fließend.).

In den vergangenen Jahren waren auf diesem Gebiet enor-
me Fortschritte zu verzeichnen, sodaß wir heute bereits
auf eine ansehnliche Liste Mendelscher Epilepsiegene
blicken können [1–3]. Überblicksmäßig seien vorerst eini-
ge allgemeine, bemerkenswerte Punkte erwähnt:
• Bisher konnten vor allem Ionenkanalgene, Neurotrans-

mitter-assoziierte Gene sowie einige andere Gene
identifiziert werden (siehe Tabelle 2 und die Auflistung
der Syndrome). Die genaue funktionelle Abklärung der
einzelnen Mutationen gestaltet sich schwieriger als ur-
sprünglich angenommen. In manchen Fällen scheint
durch Änderung der Eigenschaften eines Ionenkanals
die Auslösung repetitiver Aktionspotentiale erleichtert
mit der Folge einer erhöhten Erregbarkeit oder ver-
minderten Inhibierung epilepsierelevanter neuronaler
Netzwerke [22].

• Überraschend und lehrreich war, daß mehrere fokale
Epilepsien (z. B. autosomal dominante laterale Tempo-
rallappenepilepsie oder die familiäre nächtliche Fron-
tallappenepilepsie) in dieser monogenetischen Gruppe
erscheinen, da bis vor wenigen Jahren lediglich bei den
idiopathisch generalisierten Epilepsien eine genetische
Ursache angenommen wurde.

• Auffällig ist die enorme phänotypische und genotypi-
sche Heterogenität bei monogenetischen Epilepsien.
Unter der phänotypischen Heterogenität versteht man,
daß Mutationen im gleichen Gen zum Teil sehr unter-
schiedliche Krankheitsbilder verursachen können (z. B.
Krankheitsspektrum bei Mutationen im SCN1A-Gen).
Andererseits können Defekte in unterschiedlichen Ge-
nen idente Krankheitsbilder auslösen (z. B. genetische
Ursachen der juvenilen Myoklonusepilepsie).

• Die Frequenz der einzelnen monogenetischen Epilep-
siesyndrome ist sehr gering, oft sind weltweit nur weni-

Tabelle 1: Ausgewählte funktionelle Polymorphismen mit möglicher Bedeutung für komplexe Epilepsien. Bei allen Polymorphismen liegen positiv
replizierte Assoziationsstudien vor.

Gen-Polymorphismus Genprodukt und Funktion Bedeutung in Epilepsie Zitate

PDYN (Prodynorphin-Gen) Dynorphin A: neuromodulatorischer H- (High-expression-) Allele scheinen vor [11–14]
      Promoter-VNTR-Poly- Co-Transmitter, wirkt inhibierend Anfällen zu schützen. Erster und bislang
      morphismus einziger regulatorischer Polymorphismus,
      (beeinflußt Expression) für den positiver Selektionsdruck in humaner

Evolution nachgewiesen werden konnte.
ABCB1 (Multi-Drug- PGP (P-Glykoprotein): transportiert Scheint Therapieresistenz bei Epilepsien und [15, 16]
      Resistance-Gen 1) u. a. Antiepileptika aus Gehirn ab vielen anderen Erkrankungen zu beeinflussen.
      Exon-26 3435 Endgültige Bewertung allerdings noch unklar,
      Polymorphismus da auch negative Replikationsstudien existieren.
      (beeinflußt Expression/
      Aktivität)
SCN1A α1-Untereinheit des spannungsabhängigen Scheint Therapieresistenz bzw. Schwere der [17, 18]
      rs3812718-SNP (beeinflußt Na+-Kanals: Angriffsziel für div. Antiepileptika Epilepsie zu beeinflussen.
      alternierendes Splicing)
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ge Familien beschrieben. Da es aber viele verschiedene
monogenetische Epilepsiesyndrome geben dürfte (die
aber bei weitem noch nicht alle erkannt sind), können
in jeder größeren Epilepsieambulanz mehrere mono-
genetische Epilepsiefälle vermutet werden. Solche
Familien werden aber nur bei genauer Erhebung der
Familienanamnese augenfällig.

Ablauf der praktischen Gentestung

Vom Standpunkt des Klinikers, der einen Patienten gene-
tisch testen lassen möchte, sind folgende Punkte zu beach-
ten: Die genetische Testung auf epilepsieassoziierte Einzel-
basenmutationen ist nach wie vor sehr aufwendig. Einer-
seits kommen aufgrund der genotypischen Heterogenität
fast immer mehrere Gene in Betracht, außerdem muß je-
des Gen, das sich über zahlreiche Exone und viele tausend
Basenpaare genomischer DNA erstreckt, durchsequenziert
werden, da die Mutation prinzipiell überall im Gen auftreten
kann [23]. Letztlich kann das mehrere Tage oder Wochen
Laborarbeit und mehrere tausend Euro Kosten bedeuten.
Die genetische Testung ist daher (noch) keine Screening-
methode und sollte sorgfältig überlegt werden. Als erste
Voraussetzung sollte eine stark positive Familienanamnese

vorliegen, mit klarem Hinweis auf einen Mendelschen Ver-
erbungsmodus (in der Regel zumindest drei oder mehr be-
troffene Familienmitglieder). Als nächstes erhebt sich die
Frage, ob das klinische Erscheinungsbild einem der erkann-
ten Syndrome gut genug entspricht, um den Aufwand der
Sequenzierung eines spezifischen Gens zu rechtfertigen.
Wenn diese Frage positiv beantwortet werden kann, macht
es Sinn, mit einem auf die spezifische Erkrankung speziali-
sierten Labor Kontakt aufzunehmen. In der Regel wird sich
die betreffende Forschungsgruppe aus wissenschaftlichen
Gründen über die Proben freuen (und vielleicht sogar nach
mehreren Monaten einen Befund liefern). In Routine-Gen-
labors sind Epilepsiegene noch kaum im Programm.

Ein anderer Fall liegt vor, wenn zwar ein klarer Mendel-
scher Vererbungsmodus besteht, aber trotz Literatursuche
und Nachschlagen in der OMIM-Datenbank kein zur Kli-
nik passendes Syndrom gefunden werden kann. Vom wis-
senschaftlichen Standpunkt betrachtet kann diese Situa-
tion trotzdem sehr wertvoll sein, da anhand solcher Fami-
lien neue, noch unbekannte Epilepsiegene identifiziert
werden könnten. Nach Möglichkeit sollten solche Fami-
lien daher in Zusammenarbeit mit einem interessierten
genetischen Forschungslabor weiter untersucht werden
(z. B. durch Kopplungsanalyse).

Tabelle 2: Ausgewählte Mendelsche Epilepsiesyndrome und deren Gene

Syndrom (OMIM-Nummer) Gen Syndrom (OMIM-Nummer) Gen

GEFS+ („generalized epilepsy SCN1A (α1-Untereinheit des span-
with febrile seizures plus“) nungsabhängigen Natriumkanals)
(OMIM 604233) SCN1B (β-Untereinheit)

SCN2A (α2-Untereinheit)
GABRG2 (γ2-Untereinheit des
GABA-Rezeptors)

Dravet-Syndrom („severe myoclo- SCN1A (α1-Untereinheit des span-
nic epilepsy of infancy“ – SMEI) nungsabhängigen Natriumkanals)
(OMIM 607208) „truncation mutations“

Benigne familiäre neonatale- SCN2A (α2-Untereinheit des span-
infantile Anfälle (OMIM 607745) nungsabhängigen Natriumkanals)

Benigne familiäre Neugeborenen- KCNQ2 und KCNQ3 (spannungsab-
krämpfe (BFNC) (OMIM 607745) hängige Kaliumkanäle, bilden ge-

meinsam M-Kaliumstrom)

Verschiedene IGE-Syndrome CLCN2-Gen (spannungsabhängiger
(übergreifend für CAE, JAE, JME, Chloridkanal)
EGMA)

Absenceepilepsie des Schulalters CACNA1H-Gen (α1H-Untereinheit
(CAE) (OMIM 600131 und des spannungsabhängigen Kalzium-
607681) kanals, bildet T-Typ-Kalziumstrom)

GABRG2 (γ2-Untereinheit des
GABA-Rezeptors)

Generalisierte Epilepsie (mit par- KCNMA1-Gen (BK-Kaliumkanal
oxysmaler Dyskinesie) oder „large conductance calcium-
(OMIM 609446) sensitive potassium channel“)

Juvenile Myoklonusepilepsie (JME) EFHC1 („EF-hand domain-containing-
(OMIM 254770) 1-gene“) interagiert mit Kalziumkanal

und stimuliert Apoptose

Juvenile Myoklonusepilepsie (JME) GABRA1-Gen (α1-Untereinheit des
(OMIM 606904 und 608816) GABA-Rezeptors)

CACNB4 (β4-Untereinheit des span-
nungsabhängigen Kalziumkanals)
BRD2-Gen (Transkriptionsregulation)
ME2-Gen („malic enzyme 2“, GABA-
Synthese)

Autosomal dominante nächtliche CHRNA4 (α4-Untereinheit des
Frontallappenepilepsie (ADNFLE) Acetylcholinrezeptors)
(OMIM 605375, 600513) CHRNB2 (β2-Untereinheit)

Autosomal dominante laterale LGI1-Gen („leucine-rich glioma-inac-
Temporallappenepilepsie (ADLTE) tivated gene“)
(OMIM 600512)

Pyridoxin-abhängige Epilepsie Antiquitin-Gen
(OMIM 266100)

Unverricht-Lundborg-Erkrankung Cystatin-B-Gen (Protease-Inhibitor)
(ULD) (OMIM 254800)
Lafora-Erkrankung (OMIM 254780) Laforin-Gen und Malin-Gen
Myoklonische Epilepsie mit MTTK-Gen (mitochondriale tRNA
„ragged red fibres“ (MERRF) für Lysin)
(OMIM 545000)
Neuronale Zeroidlipofuszinosen CLN1–8
(verschiedene Subtypen)
Sialidosen NEU1 (α-Neuraminidase)

PPCA-Gen (β-Galaktosialidose pro-
tective prot.)

Dentatorubro-pallidoluysianische DRPLA-Gen (instabile CAG-Expan-
Atrophie (DRPLA) (OMIM 125370) sion)
Periventrikuläre Heterotopie, Filamin-A-Gen
X-chromosomal (OMIM 300049)
Lissenzephalie, X-chromosomal DCX-Gen (Doublecortin)
(OMIM 300067)
Lissenzephalie (LIS1) LIS1-Gen (alternativ: PAFAH1B1)
(OMIM 607432)
Miller-Dieker-Lissenzephalie Mikrodeletion auf 17p inklusive
(OMIM 247200) LIS1-Gen
Lissenzephalie mit abnormalen ARX-Gen (X-chromosomal)
Genitalien (XLAG) (OMIM 300215)
Tuberöse Sklerose TSC1-Gen (Hamartin) und TSC2-Gen
(OMIM 191100) (Tuberin) (beide mit Funktion im

Zellwachstum)
Fokale kortikale Dysplasie (Taylor) TSC1-Gen (Hamartin)
Fragiles X-Syndrom FMR1-Gen
(OMIM 309550)
„Amishes infantiles“ Epilepsie- SIAT-Gen (Sialyltransferase-9)
syndrom (OMIM 609056)
SANDO-Syndrom (Spinozerebel- POLG-Gene (DNA-Polymerase-γ)
läre Ataxie mit Epilepsie und Oph-
thalmoparese) (OMIM 607459)
X-chromosomale Epilepsie mit SYN1-Gen (Synapsin 1)
Verhaltensauffälligkeiten
(OMIM 300491)
Angelman-Syndrom Mütterliche 15q11–13-Deletion
(OMIM 105830) Mutationen UBE3A-Gen (Ubiquitin

protein-ligase, 15q11–13)
Rett-Syndrom (312750) MECP2-Gen (Genmethylierung)
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Die wichtigsten monogenetischen
Epilepsiesyndrome

Im folgenden werden die wichtigsten bisher identifizierten
Epilepsiegene und Syndrome kurz vorgestellt (siehe auch
Tab. 2).

GEFS+, verwandte Syndrome und Natriumkanalmutationen
GEFS+ („generalized epilepsy with febrile seizures plus“)
wurde erst vor wenigen Jahren als eigenständiges Syndrom
erkannt [24]. Der Erbgang ist autosomal dominant mit
reduzierter Penetranz von etwa 70–80 %. Klinisch ist
GEFS+ durch ein äußerst breites und variables phänotypi-
sches Spektrum charakterisiert. Das Leitsymptom sind
multiple Fieberkrämpfe in der Kindheit, die auch noch
nach dem 6. Lebensjahr auftreten können. Ein Teil dieser
Patienten entwickelt entweder noch parallel zu den Fieber-
krämpfen oder nach einer Latenz von mehreren Jahren
afebrile Anfälle und zwar sowohl generalisierte (tonisch-
klonische, myoklonische, atonische Anfälle oder Ab-
sencen) als auch partielle Anfälle. Einzelne Patienten kön-
nen auch erst als Erwachsene mit einer klassischen
Temporallappenepilepsie auffällig werden. Die Diagnose
dieses Syndroms kann daher in der Regel nicht an einer
Einzelperson, sondern nur unter Einbeziehung aller betrof-
fenen Familienmitglieder erfolgen.

Die zugrundeliegende Genetik dieses Syndroms ist eben-
falls sehr heterogen. Am häufigsten (in ca. 10 % der gete-
steten Familien) finden sich Mutationen im SCN1A-Gen,
das für die α1-Untereinheit des spannungsabhängigen
Natriumkanals kodiert [2, 3, 25, 26]. Dieses Gen kann
wahrscheinlich als das (bisher) wichtigste Epilepsiegen be-
zeichnet werden. Funktionell scheinen die bisher identifi-
zierten Mutationen vor allem die Inaktivierung – also das
schnelle Schließen des Kanals nach einem Aktionspoten-
tial – zu verzögern. Dadurch strömen mehr Natriumionen
in die Zelle ein und depolarisieren das Membranpotential,
wodurch es in weiterer Folge zu einer Übererregbarkeit
der Zelle kommt.

Mutationen in anderen Genen können ebenfalls einen
GEFS+-Phänotyp verursachen. Selten können Mutationen
im SCN1B-Gen, dem Gen für die β-Untereinheit des Natri-
umkanals [16], oder Mutationen im SCN2A-Gen, welches
für die α2-Untereinheit diese Kanals kodiert, dafür verant-
wortlich sein [2]. Mutationen im SCN2A-Gen können
auch einem BFNIS-Syndrom („benign familial neonatal-
infantile seizures“) zugrunde liegen [27]. Schließlich
konnten auch Mutationen im Gen der γ-Untereinheit des
GABA-Rezeptors – dem GABRG2-Gen – bei GEFS+-Fami-
lien gefunden werden [28]. Offenbar scheint die vermin-
derte Aktivität des GABA-Chloridkanals eine Reduktion
der Inhibierung exzitatorischer Netzwerke zu bewirken.

Mutationen im SCN1A-Gen, die zu einem kompletten
Funktionsverlust des Ionenkanalproteins führen (durch
vorzeitigen Abbruch der Proteinsynthese) und zu 50 % de
novo entstehen (also nicht vererbt sind), verursachen sehr
schwer verlaufende frühkindliche Epilepsien. Etwa 50 %
des Dravet-Syndroms, auch „severe myoclonic epilepsy of
infancy“ (SMEI) genannt, gehen auf solche Mutationen im
SCN1A-Gen zurück [25, 29, 30]. Mittlerweile erachten
viele Autoren das Dravet-Syndrom als den schwersten
Phänotyp in einem erweiterten GEFS+-Spektrum.

Ein anderer Suszeptibilitätslokus für familiäre Fieber-
krämpfe (nicht GEFS+ entsprechend) wurde am Chromo-

som 18p11.1 identifiziert. Das verantwortliche Gen könn-
te IMPA2 sein, ein Enzym im wichtigen Phosphatidylinosi-
tol-Signalpfad, das mit der Erkrankung assoziiert werden
konnte. Mutationen in diesem Gen konnten allerdings
nicht gefunden werden [31].

Benigne familiäre Neugeborenenkrämpfe (BFNC) und
Kaliumkanalmutationen
Dieses klinisch erstmals von Andreas Rett 1964 in Wien
erkannte Syndrom ist durch kurze tonische oder tonisch-
klonische Krämpfe charakterisiert, die pünktlich am 2.
oder 3. Lebenstag einsetzen und nach mehreren Wochen
spontan remittieren [32]. Etwa 10 % der Betroffenen erlei-
den in der späteren Kindheit auch afebrile Anfälle (offen-
bar vor allem Rolandische Anfälle). Der Erbgang ist auto-
somal dominant mit hoher Penetranz. Als zugrundelie-
gende Ursache konnten Mutationen in zwei Kaliumkanä-
len, KCNQ2 und KCNQ3, gefunden werden [33, 34]. Die-
se beiden Ionenkanäle bilden gemeinsam den sogenann-
ten M-Kaliumstrom, dessen Hauptfunktion vermutlich die
Verhinderung repetitiver Aktionspotentiale ist. Das zeitlich
beschränkte Auftreten in den ersten Lebenswochen erklärt
man sich dadurch, daß in dieser Zeitspanne das GABA-
System noch exzitatorisch wirkt und die Hauptinhibition
im ZNS über den M-Strom läuft [35]. Die von Rett be-
schriebene Familie weist Punktmutationen im KCNQ2-
Gen auf, wie unsere Gruppe in einer Nachuntersuchung
zeigen konnte, und entspricht damit auch heute noch der
genetischen Definition eines BFNC-Syndroms [36].

Mendelsche idiopathisch generalisierte Epilepsien
In einer genomweiten Kopplungsanalyse in Familien mit
monogenetischen idiopathisch generalisierten Epilepsien
konnte ein Genort am Chromosom 3q26 festgestellt wer-
den. In (nur) drei dieser 46 Familien wurden Mutationen
in CLCN2-Gen, welches für den spannungsabhängigen
Chloridkanal kodiert, gefunden [37]. Das klinische Spek-
trum der IGE-Subtypen bei betroffenen Patienten umfaßte
in dieser Arbeit die Absenceepilepsie des Jugendalters, die
Absenceepilepsie des Schulalters, die juvenile Myoklonus-
epilepsie und die Aufwach-Grand-mal-Epilepsie. Weitere
Untersuchungen – auch aus unserer Gruppe – konnten
Mutationen in diesem Gen bestätigen, allerdings nur in
einem sehr kleinen Prozentsatz von IGE-Familien [38, 39].
Angesichts der Tatsache, daß fast die Hälfte der Familien in
der ursprünglichen Studie an diesen Genort koppelten,
muß vermutet werden, daß entweder noch ein weiteres
Epilepsiegen in der 3q26-Region vorliegt oder sich noch
weitere Mutationen im CLCN2-Gen verstecken, die wir
mit den herkömmlichen Techniken nicht erfassen.

Verdächtige Mutationen bei Patienten mit Absenceepilep-
sie des Schulalters (ohne klare Familienanamnese) konn-
ten im CACNA1H-Gen (T-Typ-Kalziumkanal) identifiziert
werden [40]. In einer anderen Familie mit idiopathisch ge-
neralisierter Epilepsie (mit früh einsetzenden Absencen,
generalisierten tonisch-klonischen Anfällen sowie bei man-
chen Betroffenen auch mit paroxysmalen Dyskinesien)
konnten Mutationen im KCNMA1-Gen identifiziert wer-
den. Dieses Gen kodiert für den sogenannten BK-Kalium-
kanal („large conductance calcium-sensitive potassium
channel“) [41].

Mendelsche Varianten der juvenilen Myoklonusepilepsie
(JME)
Seit den 1990er Jahren ist durch mehrere bestätigte Kopp-
lungsanalysen bekannt, daß es am kurzen Arm des Chro-
mosoms 6 mehrere Suszeptibilitätsloci für die familiären
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Formen der JME geben muß. Vor kurzem konnten nun ver-
schiedene „missense“-Mutationen im EFHC1-Gen (6p12–
p11) bei wenigen Familien mit juveniler Myoklonusepi-
lepsie identifiziert werden [42]. Das EFHC1-Genprodukt
interagiert mit dem R-Typ-Kalziumkanal und erhöht des-
sen Aktivität. Mutationen im EFHC1-Gen beeinträchtigen
damit die Funktion dieses Kalziumkanals und führen da-
durch – möglicherweise über einen gestörten Apoptose-
mechanismus – zu einer erhöhten zerebralen Erregbarkeit.

Ein weiteres Risikogen für familiäre JME könnte das BRD2-
Gen („bromodomain containing protein 2“) am Locus
6p21 sein [43]. Ein Haplotyp, der die Promoterregion
dieses Gens beinhaltet, zeigte in einer Studie eine deutli-
che Assoziation und Kopplung mit dem Phänotyp. Eigent-
liche Mutationen konnten aber nicht gefunden werden.
Dieses Gen scheint eine Rolle in der Regulation des
Transkriptionsprozesses zu spielen. Ein drittes mögliches
Risikogen – das ME2-Gen („malic enzyme 2“) – wurde
am Locus 18q21 durch eine kombinierte Linkage und
Assoziationsstudie identifiziert [44] (Klassische Mutatio-
nen konnten hier ebenfalls nicht gefunden werden, son-
dern lediglich ein Haplotyp, der durch mehrere SNPs defi-
niert wird und bei homozygoter Präsenz das Risiko für
eine JME erhöht.). ME2 kodiert für ein mitochondriales
Enzym, das bei der Synthese von GABA eine wichtige Rolle
spielt. Mutationen im GABRA1-Gen (einem GABA-Rezep-
torgen) wurden in einer Familie mit autosomal dominanter
JME gefunden [45]. In einer anderen kleinen Familie mit
JME konnte eine Mutation im CACNB4 – der β4-Unter-
einheit des Kalziumkanals – identifiziert werden [46].

Autosomal dominante nächtliche Frontallappenepilepsie
(ADNFLE) und Mutationen im Acetylcholinrezeptor
Klinisch ist dieses sehr seltene Syndrom durch nächtliche
Anfälle aus dem Frontallappen zum Teil mit sekundä-
rer Generalisierung gekennzeichnet. Der Vererbungs-
modus ist autosomal dominant mit nicht vollständiger
Penetranz (ca. 70 %). Bisher konnten mehrere Mutationen
in Acetylcholinrezeptorgenen festgestellt werden und
zwar im Gen für die α4-Untereinheit (CHRNA4) und im
Gen für die β2-Untereinheit (CHRNB2) [47, 48]. Diese
beiden Untereinheiten bilden gemeinsam die häufigste
Variante des Acetylcholinrezeptors im ZNS, der prä-
synaptisch lokalisiert ist und wahrscheinlich über einen
komplexen Mechanismus die Transmitterfreisetzung mo-
duliert.

Autosomal dominante laterale Temporallappenepilepsie
(ADLTE) – Mutationen im LGI1-Gen
Dieses sehr seltene autosomal dominante Temporallap-
penepilepsie-Syndrom ist durch einen neokortikalen An-
fallsbeginn mit auditorischen (ungeformte Töne), aphasi-
schen oder visuellen Auren gekennzeichnet. Auffällig ist
auch die deutliche linksseitige Dominanz der EEG-Verän-
derungen – die Gründe dafür sind aber gänzlich unklar.
Bislang konnten mehrere Mutationen in LGI1-Gen („leu-
cine-rich glioma-inactivated gene“) gefunden werden
[49]. Wie dieses Protein, das wahrscheinlich sezerniert
wird, zur Entstehung von Anfällen beiträgt, ist nach wie
vor vollkommen ungeklärt [50].

Epilepsie als Teil eines weiteren Symptomspektrums

In diese dritte Gruppe fallen genetische Erkrankungen, die
zusätzlich zu epileptischen Anfällen auch durch andere
wegweisende pathognomische Symptome oder Befunde

gekennzeichnet sind. Vom ätiologischen Standpunkt ist die
Trennung von der obigen Gruppe der monogenetischen
Epilepsien unscharf und bis zu einem gewissen Grad will-
kürlich. Sie wird aber in der Literatur und auf Kongressen
oft implizit vorgenommen, wo viele dieser Erkrankungen
bei der Besprechung über „eigentliche“ Epilepsiegene
weniger Beachtung finden. Vom praktischen Standpunkt
des Klinikers ist diese Trennung aber durchaus sinnvoll, da
bei Vorliegen solcher zusätzlicher pathognomischer Sym-
ptome die weitere Abklärung vorgezeichnet ist.

Progressive Myoklonusepilepsien
Diese Gruppe schwerst verlaufender Erkrankungen ist
durch multifokale myoklonische Anfälle gekennzeichnet,
die oft durch bestimmte Haltepositionen, Bewegungen
oder externe Stimuli ausgelöst werden. Weiters kann es
auch zu tonisch-klonischen und anderen Anfällen kom-
men. Charakteristisch ist die progressive neurologische
Symptomatik mit zerebellärer Ataxie, Tremor, Dysarthrie
und zunehmender Demenz [51].

Die Unverricht-Lundborg-Erkrankung (ULD) mit autoso-
mal-rezessivem Erbgang und Erkrankungsbeginn zwischen
dem 6. und 15. Lebensjahr ist die häufigste Variante (1 in
20.000 Geburten in Finnland). Mutationen im Cystatin-B-
Gen (CSTB), einem Protease-Inhibitor mit Hemmfunktion
auf die Apoptose, sind für diese Erkrankung verantwortlich
[52]. Die Hauptmutation ist eine instabile Expansion eines
Dodecamer-Repeats in der Promotorregion – normal sind
2 bis 3 Wiederholungen, bei Erkrankten finden sich zu-
mindest 30 Repeats. Die genetische Testung auf diese
Mutation ist relativ wenig aufwendig und wird daher
vielerorts angeboten.

Die Lafora-Erkrankung geht oft mit sehr schwer beherrsch-
baren tonisch-klonischen Anfällen bis hin zum Status epi-
lepticus einher. Der Erbgang ist autosomal rezessiv und als
verantwortliches Gen wurde Laforin identifiziert – eine
Tyrosin-Phosphatase mit Bedeutung für die translationelle
Proteinfaltung [53]. Histologisch kann man in der Haut-
biopsie Lafora-Einschlußkörper feststellen. Die myokloni-
sche Epilepsie mit „ragged red fibres“ (MERRF) – eine
mitochondriale Erkrankung (d. h. mit mütterlicher Über-
tragung) – ist auch durch eine Myopathie (mit „ragged red
fibres“ in der Biopsie) und eine Optikusatrophie gekenn-
zeichnet. Genetisch finden sich Mutationen im mitochon-
drialen MTTK-Gen – einem tRNA-Gen [54]. Da 90 % der
Patienten eine spezifische Basenpaarmutation aufweisen,
ist die Testung vergleichsweise einfach.

Die neuronalen Zeroidlipofuszinosen, eine Gruppe  auto-
somal rezessiver Speicherkrankheiten, sind klinisch und
genetisch heterogen. Gemeinsam ist ihnen die abnorme
Ablagerung von Lipopigmenten in Lysosomen. Bisher
identifizierte Gene sind das TPP1-Gen (CLN1-Gen), wel-
ches für ein Protein-abbauendes Enzym kodiert, und die
Gene CLN2 bis CLN8 (jeweils unklare Funktion) [55].

Die Sialidosen sind ebenfalls seltene autosomal rezessive
Speichererkrankungen mit Defizienz der α-Neuraminida-
se (NEU1-Gen) beim Typ I und der N-Acetylneuraminida-
se und B-Galactosialidase beim Typ II (PPCA-Gen) [51].
Die dentatorubro-pallidoluysianische Atrophie (DRPLA)
weist als einzige autosomal dominante PME einen autoso-
mal dominanten Erbgang auf. Es existieren mehrere Unter-
formen mit zum Teil psychiatrischer und auch ataxo-
choreo-athetoider Klinik. Die verantwortliche Mutation ist
eine instabile CAG-Expansion im DRPLA-Gen. Die klini-
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sche Testung ist – wie bei allen Triplet-Repeat-Erkrankun-
gen – vergleichsweise leicht möglich [56].

Störungen der neuronalen Architektur
Erkrankungen aus dieser heterogenen Gruppe von Störun-
gen lassen sich in der Regel bereits in der Bildgebung gut
diagnostizieren. Die genetische Testung ist dann in den
meisten Fällen eher von akademischem Interesse. Zu die-
ser Gruppe kann die periventrikuläre Heterotopie mit X-
chromosomaler Übertragung gezählt werden. Betroffene
Patienten sind oft durch eine Mikrozephalie und Verhal-
tensauffälligkeiten charakterisiert. Das verantwortliche
Gen heißt Filamin-A [57]. Ein anderes X-chromosomales
Gen, Doublecortin (DCX), ist bei männlichen Individuen
für ein klinisch sehr schweres Lissenzephalie-Syndrom
(Agyrie oder Pachygyrie) verantwortlich, das bei therapie-
resistenten Anfällen zu früher Wachstumsretardation und
zum Tod in der Kindheit führt [58]. Weibliche Patienten
leiden unter dem milderen Syndrom der subkortikalen
laminären Heterotopie. Als weitere Lissenzephalie-Gene
konnten ein Gen am Chromosom 7 (Reelin, RELN), ein
X-chromosomales Gen (ARX) sowie das Chromosom 17
LIS-1-Gen identifiziert werden [59–61]. Eine Deletion
mehrerer Gene am Chromosom 17p (eine sogenannte
chromosomale Mikrodeletion) ist für das Miller-Dieker-
Syndrom verantwortlich.

Für die autosomal dominante tuberöse Sklerose konnten
Mutationen im Hamartin-Gen (TSC1) und Tuberin-Gen
(TSC2) gefunden werden [62, 63]. Klinisch ist diese Er-
krankung neben epileptischen Anfällen (bei subependy-
malen Knötchen im MRT und intrakraniellen Verkalkun-
gen) u. a. durch Angiofibrome, Nierenzysten und verschie-
dene Neoplasien gekennzeichnet. Mutationen im Hamar-
tin-Gen sind auch für die fokale kortikale Dysplasie vom
Taylor-Typ verantwortlich.

Andere Erkrankungen
In der OMIM- [64] und in der Jablonski-Datenbank [65]
sind mehrere hundert genetische Erkrankungen aufgelistet,
die mit epileptischen Anfällen einhergehen können. Einige
dieser Syndrome sind in Tabelle 2 aufgeführt.

Chromosomale Störungen
Chromosomale Abnormalitäten wie Trisomien, Deletio-
nen, unbalancierte Translokationen oder Ringchromoso-
menbildungen gehen häufig mit epileptischen Anfällen
einher [66]. Im Gegensatz zu den monogenetischen Er-
krankungen liegen hier Störungen in vielen Genen im Sin-
ne eines „Gene-dosage“-Effektes vor. Klinisch fallen chro-
mosomale Störungen häufig durch Dysmorphien auf. Die
genaue Beobachtung der einzelnen Merkmale und der
Vergleich mit Online-Datenbanken (z. B. der Jablonski-
Datenbank) läßt in vielen Fällen die Diagnose bereits kli-
nisch einengen. Bei Verdacht auf eine chromosomale Stö-
rung sollte der Karyotyp bestimmt werden, eine Untersu-
chung, die in zytogenetischen Labors routinemäßig ange-
boten wird. Eine detailliertere Analyse wird in manchen
Speziallabors mit der FISH-Technik („fluorescence in situ
hybridization“) angeboten. Epileptische Anfälle sind bei
etwa 6 % der Patienten mit Trisomie 21 (Down-Syndrom)
zu beobachten. Auch bei Trisomie 18 (Edwards-Syndrom)
sowie bei Trisomie 13 und 9p kommt es häufig zu Epilep-
sien. Beim Angelman-Syndrom liegt in der Regel eine
Deletion des mütterlichen Chromosoms 15q11–13 vor.
Diese Patienten leiden mitunter an schwersten Epilepsien
mit myoklonischen Anfällen und atypischen Absencen
sowie anderen Anfallsformen.

Auch Deletionen am langen Arm von Chromosom 1 gehen
mit Anfällen einher. Das fragile X-Syndrom ist nach dem
Down-Syndrom die häufigste Ursache für eine mentale
Retardation bei Männern. Bei 20 % der Patienten kommt
es zu Anfällen – in der Kindheit Rolandische Anfälle und
beim Erwachsenen generalisierte Anfälle. Eigentlich liegt
eine CGG-Triplet-Repeat-Expansion im X-chromosomalen
FMR1-Gen vor. Da diese Expansion aber z. T. im Karyotyp
gesehen werden kann, rechnet man diese Erkrankung oft
zu den chromosomalen Störungen [67].

Abschließende Bemerkung

Trotz der wirklich beachtlichen Fortschritte muß festge-
stellt werden, daß wir nur einen Bruchteil der genetischen
Grundlagen bei Epilepsien verstehen. In den nächsten Jah-
ren können wir wohl noch auf viele Überraschungen ge-
spannt sein.

Zwei interessante Entwicklungen der jüngsten Zeit seien
hier zum Abschluß erwähnt. Mehrere Studien konnten zei-
gen, daß submikroskopische chromosomale Deletionen
und Insertionen (bis einige 100 kB lang) weit häufiger als
bisher angenommen vorkommen. Offenbar unterscheiden
sich zwei beliebige Individuen durch Dutzende bis Hun-
derte solcher sogenannter „large scale copy number varia-
tions“, was übrigens auch bedeuten würde, daß sich die
Menschheit – genetisch gesehen – nicht zu 99,9 % gleicht
[68, 69]. Solche Variationen sind wahrscheinlich eine häu-
fige Ursache von sporadischen (und daher scheinbar nicht-
genetischen) Erkrankungen. Interessant ist auch die jüngste
Erkenntnis, daß somatische Mutationen und Variationen
durchaus für „genetische Erkrankungen“ in Frage kommen.
Dieser Möglichkeit wird derzeit noch kaum Beachtung ge-
schenkt. Vor kurzem konnte aber gezeigt werden, daß
während der embryonalen Entwicklung des ZNS retro-
transposable Elemente (quasi genomische Parasiten) aktiv
werden und sich besonders in ZNS-relevante Gene ein-
pflanzen und damit auch Erkrankungen hervorrufen kön-
nen [70].
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