The Peripheral Benzodiazepine Receptor Modulates Ca\textsuperscript{2+} Transport through the VDAC in Rat Heart Mitochondria

Tamse CT, Lu X, Mortel EG, Cabrales E, Feng W, Schaefer S

Homepage: www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
The Peripheral Benzodiazepine Receptor Modulates Ca\textsuperscript{2+} Transport through the VDAC in Rat Heart Mitochondria

C. T. Tamse\textsuperscript{1}, X. Lu\textsuperscript{1}, E. G. Mortel\textsuperscript{1}, E. Cabrales\textsuperscript{2}, W. Feng\textsuperscript{2}, S. Schaefer\textsuperscript{1, 3}

The voltage-dependent anion channel (VDAC) is a key mitochondrial protein involved in the transport of calcium. Its function is, in part, regulated by associated proteins such as the 18 kDa peripheral benzodiazepine receptor (PBR). We tested the hypothesis that an endogenous ligand of the PBR, hemin, could modulate calcium transport by modifying VDAC conductance. In isolated rat cardiac mitochondria, hemin (0–10 \textmu M) exhibited multiple, time-dependent effects. Initially, hemin reduced the calcium uptake rate in a dose-dependent manner, an effect independent of the mitochondrial permeability transition (MPT) as it was not altered by cyclosporine A (CsA). However, subsequent to this inhibitory effect on calcium influx, hemin facilitated MPT as evidenced by greater calcium release following calcium loading. An inhibitory effect of hemin on VDAC conductance was supported by lipid bilayer experiments in which hemin induced channel closure of the VDAC-PBR-ANT complex. These findings indicate that the PBR ligand hemin has complex effects on mitochondrial calcium uptake, consistent with a PBR-dependent effect on VDAC conductance. J Clin Basic Cardiol 2008; 11 (online): 24–9.

Key words: benzodiazepine receptor, mitochondria, voltage dependent anion channel, VDAC, translocator protein, calcium, permeability transition, MPT, bilayer

Materials and Methods

Animals

Male Sprague-Dawley rats, 250–300 gr, were used for all the experiments and were obtained from Charles River (Boston, MA). The rats were housed and maintained following the protocols approved by the Institutional Animal Care and Use Committee (IACUC), University of California, Davis. Experiments were conducted as approved by IACUC and in accordance with the animal care guidelines set by the National Institutes of Health.

Mitochondrial Isolation

Rat heart mitochondria were isolated based on standard techniques used in our laboratory [10, 11]. Briefly, the left ventricle was dissected out and quickly washed three times in cold (4 °C) isolation buffer (IB; 250 mM Sucrose, 5 mM Tris-HCl, 1 mM EDTA; pH 7.4). The tissues were then processed in a PowerGen 1800D homogenizer (Fisher Scientific, Pittsburgh, PA), twice for 10 sec each with a one-minute interval. To further extract the heart mitochondria, a series of differential centrifugations was performed in a Sorvall RC-2B at 4 °C. The homogenate was centrifuged at 500 g, and the resulting supernatant further spun down at 13,000 g for 10 min each. The crude pellet was then suspended in 4 °C storage buffer (SB; 250 mM Sucrose, 5 mM Tris-HCl; pH 7.4). To optimize mitochondrial extraction, the pellet from the first centrifugation step was further homogenized using 12 strokes in ice-cold SB, and centrifuged at 500 g for 10 min. The resulting supernatant was used to re-suspend the crude pellet, mixed gently, and processed for a final centrifugation at 13,000 g for 10 min. This final pellet was suspended in ice-cold SB, with gentle stirring and protected from light until ready to use.

The Bradford mini-assay was used to determine the protein concentration of the final suspension [12]. A protein (BSA) standard curve was generated ranging from 0–12.5 \mu g.
Ca²⁺ Uptake and Swelling
Transport of Ca²⁺ into the freshly isolated rat heart mitochondria was determined by a spectrophotometric method using APIII as the Ca²⁺ indicator dye, and monitored at 720 nm [10]. Samples were prepared by adding (as total concentration): energy substrates (5 mM glutamate, 2.5 mM malate), sarcosplenic reticulum Ca²⁺ inhibitor (0.5 μM thapsigargin), and the endogenous PBR inhibitor (0–10 μM hemin). The desired protein concentration (0.5 mg/ml) was added immediately prior to the assay. A final concentration of 60 μM Ca²⁺ was introduced 30–60 seconds into the assay. A decrease in absorbance values indicated uptake of the Ca²⁺-APIII complex into the mitochondrial isolates. Ca²⁺ uptake experiments were done with and without cyclosporine A (CsA, 0.2 μM), an inhibitor of MPT.

Protein Purification and Immunoblotting
In order to test the effect of the PBR ligand on VDAC conductance, VDAC-PBR-ANT were isolated and purified from cardiac tissue before fusion in lipid bilayers. Heart mitochondria were isolated from the rat left ventricle according to laboratory protocols, as described above. Protein purification techniques were based from de Pinto et al [13], and modified for our protocols. Briefly, the resulting homogenate was solubilized (10 mM Tris-HCl, 1 mM EDTA, 3 % Triton-X; pH 7), in ice for 30 min. Purification was done by elution of the samples through an equilibrated Q-FF column (GE Healthcare, Piscataway, NJ) using the equilibration buffer (10 mM Tris-HCl, 1 mM EDTA, 0.5 % Triton-X; pH 7), washing in using series of NaCl (50, 100, 200, 500 mM) + 0.1 % Triton-X, and collecting the eluates. These were then stored in –80 °C until use for lipid bilayer experiments.

The amount of protein in the eluates was detected using the Bradford assay, and determined based on the protein (BSA) standard curve generated. The presence of VDAC and PBR in the purified solutions was in turn determined using the immuno dot blot method [14]. Samples that were immunopositive for VDAC and PBR were separated on a 4–12 % gel. Presence of VDAC and PBR in the purified solutions was determined using the WesternBreeze® chemiluminescent protocol (Invitrogen). Antibodies against VDAC (Sigma-Aldrich, St. Louis, MO), PBR (Trevigen, Gaithersburg, MD), and ANT (Santa Cruz Biotechnology, Santa Cruz, CA) were used at 1:1000 dilution, 1–2 hours, at room temperature.

Lipid Bilayer Membrane Experiments
Bilayers were composed of phosphatidylethanolamine: phosphatidylserine:phosphatidylcholine (5:3:2 w/w, Avanti Polar Lipids, Inc, Alabaster, AL) dissolved in decane at a final concentration of 30 mg/ml across a 200 nm aperture on a polysulfone cup (Warner Instrument Corp, CT). The bilayer partitioned two chambers (cis and trans) with buffer solution (in mM) 500 NaCl or CsCl and 20 Hepes-Tris (pH 7.4) on cis, 500 or 50 NaCl or CsCl and 20 Hepes-Tris (pH 7.4) on trans [15]. The addition of protein was made to the cis solution that was held at the virtual ground, whereas the trans solution was connected to the head stage of an amplifier (Bilayer Clamp BC 525C, Warner Instruments Inc, Hamden, CT). The final concentration of the detergent Triton-X from solubilized protein source was < 0.015 % in the cis chamber. BLM-TC Planar Lipid Bilayer Thermocycler (Warner Instruments) was used to control the recording temperature throughout the experiment at a setting of either 25 °C. After introduction of purified VDAC-PBR-ANT protein complex into cis solution, the induced incorporation of VDAC channels was verified through their voltage signature (ie, exhibiting ionic and anionic currents) and functional characteristics (ie, voltage dependence) [16]. Further incorporation was prevented by extensive perfusion of cis chamber with identical buffer without VDAC-PBR-ANT proteins. The channel gating was monitored and recorded at certain holding potentials from 0, ± 40 to ± 60 mV (applied to the trans side). The amplified current signals, filtered at 1 kHz (Low-Pass Bessel Filter 8 Pole, Warner Instruments) were digitized and acquired at a sampling rate of 10 kHz (Digidata 1320A, Axon-Molecular Devices, Union City, CA).

Statistical Analysis
Differences between responses at varying concentrations of hemin were analyzed using ANOVA with Holm-Sitek or Dunn’s post-test as appropriate on the statistical program SPSS (SPSS, Inc, Chicago, IL). P < 0.05 was used as the threshold for statistical significance. Data are presented as mean ± standard error (SE) of the mean.

Results
The PBR Ligand Hemin Reduces Net Calcium Uptake Rate in a Dose-Dependent Manner
Figure 1 shows a representative tracing of extra-mitochondrial calcium kinetics following the addition of 60 μM Ca²⁺ into a solution containing isolated cardiac mitochondria and the calcium-sensitive marker APIII. Since APIII reflects the extra-mitochondrial calcium concentration, a decrease in the absorbance is a result of calcium entry into mitochondria. For analysis of calcium kinetics, the initial uptake rate and amount were measured as indicators of net calcium influx. Calcium release was then quantified as the slope of the APIII signal following loading. Figure 2a shows the net calcium uptake following loadings.
uptake rate and amount during the initial transport of calcium into mitochondria and demonstrates that there was a dose-dependent reduction in calcium uptake rate over the hemin concentration range of 0–10 μM. The reduction of net calcium amount was similar in magnitude to the reduction in rate; however, these changes did not reach statistical significance due to high variability. A key finding was that CsA did not affect these measurements, indicating that this initial uptake response was independent of the mitochondrial permeability transition.

The PBR Ligand Hemin Results in Dose-Dependent Calcium Release

In control mitochondria in the absence of hemin, mitochondria would rapidly take up calcium and maintain their stores, resulting in a stable external calcium concentration and APIII signal (release slope = 0). These observations indicate that, under the conditions of these experiments, calcium release was not precipitated by exposure to and uptake of a 60 μM Ca²⁺ load. However, exposure to this calcium load in the presence of increasing concentrations of hemin resulted in greater calcium release rates following loading (Fig. 3). This release was significantly inhibited by CsA at hemin 5 and 10 μM that was partially inhibited by CsA, consistent with an important role for permeability transition in this release process.

The PBR Ligand Hemin Reduces VDAC Conductance in a Dose- and Time-Dependent Manner

Using the techniques described above, VDAC-PBR-ANT co-precipitates and PBR alone were purified from heart mitochondria samples. VDAC alone could not be isolated, as each preparation with VDAC also contained PBR. Eluates enriched in VDAC-PBR-ANT were then diluted and applied to cis chamber (having a 10:1 chemical gradient against the trans side of bilayer membrane) to induce channel incorporation into lipid bilayers [15]. The currents through the reconstituted channel(s) were recorded under certain transmembrane holding potentials and hemin concentrations. The results demonstrate that hemin at 5 or 10 μM reduced VDAC voltage-dependent conductance, particularly after a 3-minute exposure (n = 7). Figure 4 shows a representative experiment, demonstrating that, in the absence of hemin, the channels exhibited typical behavior characteristic of VDAC,
J Clin Basic Cardiol 2008; 11 (online): 27

Hemin Modulates Mitochondrial VDAC

This study presents several key findings supporting the hypothesis that PBR has a regulatory role on VDAC conductance and, hence, mitochondrial function under a variety of physiologic and pathophysiologic conditions [18]. Despite clear evidence of the association of the PBR with VDAC, the mechanism of PBR modulation of VDAC is unknown. However, ligands of the PBR have demonstrated an ability to precipitate MPT [19]. The MPT, in a manner similar to VDAC in its inward transport function, is generally considered to be an assembly of proteins including VDAC, ANT, PBR, hexokinase, creatine kinase, Bax/Bcl-2, and cyclophilin-D which functions to release mitochondrial compounds and promote apoptosis [20].

Mitochondrial Peripheral Benzodiazepine Receptor (PBR)

As noted above, the PBR is an 18 kDa protein associated with VDAC that can modulate VDAC conductance and, hence, mitochondrial function under a variety of physiologic and pathophysiologic conditions [18]. Despite clear evidence of the association of the PBR with VDAC, the mechanism of PBR modulation of VDAC is unknown. However, ligands of the PBR have demonstrated an ability to precipitate MPT and apoptosis [22, 23], presumably by their interaction with the PBR component of the MPT. Conversely, some ligands (e.g. SSR180575 or Ro5-4864) are protective under conditions of ischemia/reperfusion, although the mechanism of this effect is unknown [24].

The characteristics of PBR ligands and their binding sites vary, thereby resulting in potentially different effects on membrane transport and MPT. The ligand used in this study, hemin or protoporphyrin IX (PPIX), is an endogenous PBR ligand involved in the intracellular transport of porphyrins and heme which has been shown to have high affinity for the PBR (Kd ~12–15 nM) [25, 26]. Hemin was selected over pharmacologic ligands because of its key role in physiologic processes [25], as well as data showing that hemin may be protective in a model of cardiomyopathy [27].

Discussion

This study presents several key findings supporting the hypothesis that PBR has a regulatory role on VDAC-modulated entry of Ca^{2+} into heart mitochondria. First, the endogenous PBR ligand hemin was able to reduce initial uptake of calcium into mitochondria in a dose-dependent manner that was independent of the permeability transition. Second, mitochondria exposed to a calcium load in the presence of hemin subsequently released calcium following loading, a response partially inhibited by CsA. Third, the effects of hemin on the VDAC-PBR-ANT complex were inhibitory and dose-dependent when tested in lipid bilayers. Together, these data indicate a potentially important regulatory role for the 18 kDa peripheral benzodiazepine receptor on VDAC function and, as a consequence, on metabolite and ion transport into and out of mitochondria.

VDAC

The voltage-dependent anion channel (VDAC) is found in mitochondria of all eukaryotic organisms. This channel can exist in a variety of functional states which mediate its permeability to anions, cations and metabolites. Important compounds transported through VDAC include ATP, NADH, and Ca^{2+}, indicating that VDAC function has an important regulatory role in transport across the outer mitochondrial membrane (OMM) [1]. The permeability of VDAC is determined not only by membrane voltage, but also by its conductance state determined, in part, by associated regulatory proteins [17, 18]. These proteins include the adenine nucleotide translocator (ANT) and the mitochondrial peripheral benzodiazepine receptor (PBR), which form a complex with VDAC to regulate transport across the OMM. Another important function of VDAC is its central role in the formation of the mitochondrial permeability transition (MPT) [19]. The MPT, in a manner similar to VDAC in its inward transport function, is generally considered to be an assembly of proteins including VDAC, ANT, PBR, hexokinase, creatine kinase, Bax/Bcl-2, and cyclophilin-D which functions to release mitochondrial compounds and promote apoptosis [20].

Figure 5 shows the current distribution of a VDAC-PBR-ANT complex reconstituted in lipid bilayer as exposure to defined concentrations of hemin. At the holding potential of ~40 mV (on trans), VDAC-PBR-ANT stayed more frequently at maximal open state. Addition of 2.5, 5 and 10 μM hemin in the cis chamber promoted reduced current amplitudes to a lower and eventually zero value.

Figure 5. Current amplitude histograms of a VDAC-PBR-ANT channel complex reconstituted in lipid bilayer as exposure to defined concentrations of hemin. At the holding potential of ~40 mV (on trans), VDAC-PBR-ANT stayed more frequently at maximal open state. Addition of 2.5, 5 and 10 μM hemin in the cis chamber promoted reduced current amplitudes to a lower and eventually zero value.

Discussion

This study presents several key findings supporting the hypothesis that PBR has a regulatory role on VDAC-modulated entry of Ca^{2+} into heart mitochondria. First, the endogenous PBR ligand hemin was able to reduce initial uptake of calcium into mitochondria in a dose-dependent manner that was independent of the permeability transition. Second, mitochondria exposed to a calcium load in the presence of hemin subsequently released calcium following loading, a response partially inhibited by CsA. Third, the effects of hemin on the VDAC-PBR-ANT complex were inhibitory and dose-dependent when tested in lipid bilayers. Together, these data indicate a potentially important regulatory role for the 18 kDa peripheral benzodiazepine receptor on VDAC function and, as a consequence, on metabolite and ion transport into and out of mitochondria.

VDAC

The voltage-dependent anion channel (VDAC) is found in mitochondria of all eukaryotic organisms. This channel can exist in a variety of functional states which mediate its permeability to anions, cations and metabolites. Important compounds transported through VDAC include ATP, NADH, and Ca^{2+}, indicating that VDAC function has an important regulatory role in transport across the outer mitochondrial membrane (OMM) [1]. The permeability of VDAC is determined not only by membrane voltage, but also by its conductance state determined, in part, by associated regulatory proteins [17, 18]. These proteins include the adenine nucleotide translocator (ANT) and the mitochondrial peripheral benzodiazepine receptor (PBR), which form a complex with VDAC to regulate transport across the OMM. Another important function of VDAC is its central role in the formation of the mitochondrial permeability transition (MPT) [19]. The MPT, in a manner similar to VDAC in its inward transport function, is generally considered to be an assembly of proteins including VDAC, ANT, PBR, hexokinase, creatine kinase, Bax/Bcl-2, and cyclophilin-D which functions to release mitochondrial compounds and promote apoptosis [20].

The essential role that VDAC plays in the transport of crucial compounds across the mitochondrial membranes makes knowledge of its regulation important.

There is substantial evidence that calcium transport across the mitochondrial membrane is modulated by VDAC. In liver mitochondria, Gincel et al [5] showed that VDAC was permeable to Ca^{2+}, has Ca^{2+} binding sites, and is inhibited by ruthenium red (an inhibitor of the calcium uniporter). In fact, the data support the concept that the VDAC-PBR-ANT complex may be the calcium uniporter, the primary entry pathway for calcium in mitochondria. In support of this concept, Rapizzi et al [21] demonstrated that VDAC over-expression increased mitochondrial Ca^{2+} loading and apoptosis.

Mitochondrial Peripheral Benzodiazepine Receptor (PBR)

As noted above, the PBR is an 18 kDa protein associated with VDAC that can modulate VDAC conductance and, hence, mitochondrial function under a variety of physiologic and pathophysiologic conditions [18]. Despite clear evidence of the association of the PBR with VDAC, the mechanism of PBR modulation of VDAC is unknown. However, ligands of the PBR have demonstrated an ability to precipitate MPT and apoptosis [22, 23], presumably by their interaction with the PBR component of the MPT. Conversely, some ligands (e.g. SSR180575 or Ro5-4864) are protective under conditions of ischemia/reperfusion, although the mechanism of this effect is unknown [24].

The characteristics of PBR ligands and their binding sites vary, thereby resulting in potentially different effects on membrane transport and MPT. The ligand used in this study, hemin or protoporphyrin IX (PPIX), is an endogenous PBR ligand involved in the intracellular transport of porphyrins and heme which has been shown to have high affinity for the PBR (Kd ~12–15 nM) [25, 26]. Hemin was selected over pharmacologic ligands because of its key role in physiologic processes [25], as well as data showing that hemin may be protective in a model of cardiomyopathy [27].
Hemin Limits Calcium Overload in Isolated Mitochondria

Upon exposure to a calcium load, mitochondria take up calcium, a process completely inhibited by ruthenium red, as shown in prior studies [5] and the current study. We postulated that, given the critical role of VDAC in Ca\(^{2+}\) transport, modulation of the PBR by an endogenous ligand would limit calcium uptake. The current data support this concept, since hemin limited initial Ca\(^{2+}\) uptake in a dose-dependent manner. This effect was seen both in the rate of calcium uptake, as well as in its amount (Fig. 2). Since calcium overload is likely a key element in mitochondrial and cellular death, either through necrosis or apoptosis [29], the effect of hemin limiting calcium entry at low concentrations is a potential therapeutic intervention similar to that of inhibiting calcium entry using Ru360 [9]. This effect may help explain the beneficial results seen when hemin was administered to rats with adriamycin-induced cardiomyopathy [27]. It should be noted, however, that hemin has dual actions on calcium transport, particularly at higher concentrations (≥ 5 μM). As seen in the current experiments, and as previously seen in isolated rat brain mitochondria [29], hemin both inhibits Ca\(^{2+}\) uptake and promotes permeability transition.

Hemin Effects on VDAC/PBR Conductance in Lipid Bilayers

Consistent with the known association of PBR and VDAC, hemin decreased conductance through VDAC as reflected in significantly reduced current through the reconstituted channels in bilayers. The effect of hemin on calcium uptake in isolated mitochondria is consistent with this interaction, as is the effect of hemin on permeability transition [30]. Unknown at this time is the mechanism of PBR modulation of VDAC. Potential interactions between PBR and VDAC include phosphorylation of a 43 kDa protein involved in electron transport [31] leading to changes in membrane voltage sensitive VDAC sensor and/or binding of PBR to a mobile N-terminal amphipathic α-helix arm [32] resulting in conformational change in the VDAC barrel.

Limitations

These experimental results should be placed in the context of the model used. First, they were performed using mitochondria and proteins isolated from rat cardiac tissue. As such, the model used. First, they were performed using mitochondrial transport [31] leading to changes in membrane voltage sensitive VDAC sensor and/or binding of PBR to a mobile N-terminal amphipathic α-helix arm [32] resulting in conformational change in the VDAC barrel.

These experimental results should be placed in the context of the model used. First, they were performed using mitochondria and proteins isolated from rat cardiac tissue. As such, the model used. First, they were performed using mitochondrial transport [31] leading to changes in membrane voltage sensitive VDAC sensor and/or binding of PBR to a mobile N-terminal amphipathic α-helix arm [32] resulting in conformational change in the VDAC barrel.

These experimental results should be placed in the context of the model used. First, they were performed using mitochondria and proteins isolated from rat cardiac tissue. As such, the model used. First, they were performed using mitochondrial transport [31] leading to changes in membrane voltage sensitive VDAC sensor and/or binding of PBR to a mobile N-terminal amphipathic α-helix arm [32] resulting in conformational change in the VDAC barrel.

These experimental results should be placed in the context of the model used. First, they were performed using mitochondria and proteins isolated from rat cardiac tissue. As such, the model used. First, they were performed using mitochondrial transport [31] leading to changes in membrane voltage sensitive VDAC sensor and/or binding of PBR to a mobile N-terminal amphipathic α-helix arm [32] resulting in conformational change in the VDAC barrel.

These experimental results should be placed in the context of the model used. First, they were performed using mitochondria and proteins isolated from rat cardiac tissue. As such, the model used. First, they were performed using mitochondrial transport [31] leading to changes in membrane voltage sensitive VDAC sensor and/or binding of PBR to a mobile N-terminal amphipathic α-helix arm [32] resulting in conformational change in the VDAC barrel.
33. Verma A, Nye JS, Snyder SH. Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. Proc Natl Acad Sci USA 1987; 84: 2256–60.
Mitteilungen aus der Redaktion

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

- Bilddatenbank
- Artikeltdatenbank
- Fallberichte

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.

Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.

Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

- Bestellung e-Journal-Abo

Haftungsausschluss


Bitte beachten Sie auch diese Seiten:

- Impressum
- Disclaimers & Copyright
- Datenschutzerklärung