Cardiogenic hepatic injury-renal impairment

Naschitz JE, Abinader EG, Elias N, Sabo E, Yeshurun D
Zuckerman E

Homepage:
www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Cardiogenic Hepatic Injury-Renal Impairment

Cardiogenic hepatic injury-renal impairment (CAHRI) was defined by us as an acute complication, manifesting within 48 hours after an episode of pulmonary oedema or a coronary event, occurring in the absence of hypotension, and characterized by hepatic damage and renal functional impairment. The aim of this study was to describe the features, circumstances of appearance, and response to therapy of CAHRI.

Twenty-five consecutive patients with CAHRI were observed prospectively. The onset of CAHRI was characterized by an abrupt increase of alanine aminotransferase (median peak 988 IU/Dl), aspartate aminotransferase (median peak 528 IU/Dl) and serum creatinine, with blood urea nitrogen/creatinine ratio > 15. Treated with conventional medications the course of CAHRI was fatal in 4/4 cases. Twenty-one patients were treated with the splanchnic vasodilator dopamine 2.5 µg/min/kg. The hepatic and renal tests peaked on days 2-3 and subsequently improved, however, an unexpected deterioration of cardiac function occurred in 15 cases, mostly on days 3-5, and was the chief cause of death in 52 % of the dopamine treated patients.

CAHRI is a severe but potentially reversible complication of congestive heart failure, that should be promptly recognized and treated. The early improvement of symptoms and laboratory alterations may be misleading since a second bout of heart failure often ensues, precipitating the patient’s death. Improvement of the outcome of CAHRI might be dependent on the better understanding of the pathogenesis of this second bout of heart failure, on haemodynamic monitoring during the five-day vulnerable period, and on introduction of new therapies. J Clin Basic Cardiol 2000; 3: 35–8.

Key words: heart failure, ischaemic hepatitis, dopamine

Abnormalities in liver function tests have been noted frequently in patients with chronic congestive heart failure. They are generally mild and not associated with clinically apparent hepatic disease [1, 2]. An occasional patient with heart failure, however, may demonstrate striking evidence of hepatic necrosis, sometimes exhibiting hepatic coma, and often bringing about the patient’s death. While vaguely resembling acute viral hepatitis, this condition termed ‘ischaemic hepatitis’ has quite distinct clinical laboratory and histologic features [3-5]. We have described a variant of ischaemic hepatitis [6, 7], characterized by combined cardiogenic hepatic injury and renal impairment. This complication occurs in patients with severe chronic congestive heart failure, following an episode of pulmonary oedema or an acute coronary event and in the absence of arterial hypotension. It differs from isolated ischaemic hepatitis and isolated renal damage by the combined visceral involvement and from ‘shock liver’ [8] and ‘shock kidney’ [9] by apparently not being preceded by hypotension. In the present analysis we extended the preliminary observations [6, 7] on cardiogenic hepatic injury and renal impairment (CAHRI) to describe the circumstances of appearance, the clinical and laboratory features, and the response to therapy of the disorder.

Methods

The diagnosis of CAHRI was established when the following criteria were met:

1. Cardiogenic pulmonary oedema, an acute coronary event [10], or both preceded the alterations in the hepatic and renal tests by up to 48 hours
2. Increase of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), or both to 500 IU/Dl or more
3. Increase of serum creatinine by 0.5 mg/Dl or more, with concomitant serum BUN/creatinine ratio of 15 or more
4. No overt arterial hypotension, ie systolic blood pressure below 90 mmHg or decrease of the systolic blood pressure by 30 mmHg or more of baseline.

Included in this study were 25 consecutive patients with CAHRI diagnosed and treated at the Department of Internal Medicine A during the study period 1981–1995 and followed prospectively. Excluded were alcoholics, patients with viral or drug induced hepatitis [11], or infection on admission. The work-up included a detailed history and physical examination, electrocardiogram, chest X-ray, echocardiography or radionuclide ventriculography. The following parameters were regularly monitored: arterial blood pressure by sphygmomanometry, urinary output and electrocardiogram. Daily hepatic and renal functions, blood gases, as well as chest X-ray examinations were performed. Invasive monitoring of the systemic arterial pressure, pulmonary artery and capillary wedge pressure, cardiac output, systemic and pulmonary resistances was done in selected patients.

The following clinical data were studied: sex and age, rates of chronic congestive heart failure, chronic liver disease, chronic obstructive lung disease, and chronic renal disease, types of triggering events and the lag-time to CAHRI. The following laboratory data were analyzed: parameters of hepatocellular damage – aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), parameters of renal function – serum creatinine and blood urea nitrogen (BUN), and parameters of disseminated intravascular coagulation. The upper limit of the normal ranges in our laboratory are AST and ALT 40 IU/Dl, LDH 200 IU/Dl, creatinine 1.2 mg/Dl, BUN 20 mg/Dl, potassium 5.5 mEq/L, partial thromboplastin time 36 seconds. The lower limit of the normal ranges are serum fibrinogen 300 mg/Dl, platelet count 140,000/mm³, and prothrombin index 70 %. Serologic tests for hepatitis included hepatitis B surface antigen, anti-hepatitis B core antibodies and anti-hepatitis C virus antibodies. The tests were performed with commercial kits from Abbott Laboratories.

The first 4 patients were treated with diuretics, preload and afterload-reducing agents, and other medications taken prior to the acute episode. Digoxin was withheld. The subsequent 21 patients to develop CAHRI received low-dose dopamine.

Received June 15th, 1999; accepted August 11th, 1999.
treatment [12] in addition to prior medications. Dopamine intravenously at a rate of 2.5 µg/min/kg body weight was started immediately after the diagnosis of CAHIRI and was adminis-
tered for 3 to 5 days.

In patients with a favorable outcome, the time for the lab-
atory abnormalities to return to baseline levels and duration
of hospital stay were established. The time and causes of
intrahospital mortality were analyzed. Liver needle necropsy
was performed in 5 cases. Survivors of a first episode of
CAHIRI were followed at the outpatient clinic: cumulative
survival of the patients was estimated by the Kaplan-Meier
method [13].

Results

Twenty-five episodes of CAHIRI were diagnosed during the
15-year study period at the Department of Internal Medicine
among 1308 episodes of cardiogenic pulmonary oedema (in
327 patients) and 2487 acute coronary events (in 1363 patients).
There were 18 males and 7 females and their ages ranged from
63 to 94 years (median 78 years). Twenty-three patients had
been previously diagnosed and treated for chronic congestive
heart failure, 21 of whom belonged to NYHA classes III and
IV. In 2 cases there was no previously recognized heart fail-
ure. The etiologies of chronic congestive heart failure included
ischaemic heart disease (n = 11), diabetes mellitus (n = 1);
valvulopathies (n = 1), or combinations of the above (n = 12).
In all patients, cardiomegaly was present on chest X-rays, and
left ventricular systolic dysfunction on echocardiography. One
or more episodes of prior pulmonary oedema, not followed
by CAHIRI, were on record for 16 patients. Among preexistent
conditions, chronic liver disease was noticed in 2 patients (both
tested positive for hepatitis B surface antigen and had 2- to
3-fold increase in ALT and AST for several years), chronic
obstructive pulmonary disease in 10 patients and mild chronic
renal failure in 7 patients. Medications on the verge of occur-
ence of the CAHIRI included digoxin diuretics, as well as
preload and afterload-reducing agents. Three or more of the
latter medications were given to 14 patients. Pulmonary
oedema (in 21 patients) and an acute coronary event (in 3
patients) preceded CAHIRI by 3 to 48 hours (median 25
hours). No precipitating event could be identified in one pa-
tient (Table 1). Pulmonary oedema required positive-pressure
ventilation in 2 patients.

The clinical picture of CAHIRI included weakness, apathy
and loss of appetite in all patients. Mental confusion was no-
ticed in 5, slight jaundice in 12, anuria or oliguria at onset of
CAHIRI in 8 patients. None developed flapping tremor or
coma. The main laboratory abnormalities are shown in Table
2. These abnormalities reached their peak 1 to 3 days after
onset of CAHIRI (Figure 1). Prolonged prothrombin time
was observed in 16 patients. In 7 patients, one or several addi-
tional coagulation tests were abnormal: prolonged partial
thromboplastin time, low fibrinogen levels, elevated fibrin-
fibrinogen split products, thrombocytopenia, positive D-dimer
test. None of the patients had blood sugar values less than
60 mg/Dl.

The first 4 patients were not treated with dopamine. All
died 2–4 days after the onset of CAHIRI. Twenty-one subse-
quent patients, received low-dose dopamine therapy and 10
patients recovered. Improvement of heart failure and ischae-
ic symptoms were noticed in 22 patients within 4 to 24 hours
from the triggering event; heart failure did not reverse in 3
patients. Improvement of the hepatic and renal tests began 1
to 10 days after the triggering event. In 15 patients, a second

<table>
<thead>
<tr>
<th>Table 1. Clinical setting of CAHIRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
</tr>
<tr>
<td>Total cases</td>
</tr>
<tr>
<td>Sex distribution (males : females)</td>
</tr>
<tr>
<td>Age (years; median and range)</td>
</tr>
<tr>
<td>Chronic congestive heart failure (NYHA class)</td>
</tr>
<tr>
<td>Chronic liver disease</td>
</tr>
<tr>
<td>Chronic obstructive lung disease</td>
</tr>
<tr>
<td>Chronic renal disease</td>
</tr>
<tr>
<td>Antecedent acute coronary event*</td>
</tr>
<tr>
<td>Antecedent acute pulmonary oedema*</td>
</tr>
</tbody>
</table>

* 48 hours or less before CAHIRI was diagnosed

<table>
<thead>
<tr>
<th>Table 2. Laboratory abnormalities during the course of CAHIRI (peak values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>AST (U/Dl)</td>
</tr>
<tr>
<td>ALT (U/Dl)</td>
</tr>
<tr>
<td>LDH (U/Dl)</td>
</tr>
<tr>
<td>Prothrombin time (%)</td>
</tr>
<tr>
<td>Serum potassium (mEq/L)</td>
</tr>
<tr>
<td>Serum creatinine (mg/Dl)</td>
</tr>
<tr>
<td>BUN (mg/Dl)</td>
</tr>
</tbody>
</table>

* From precipitating event to peak value

Figure 1. Time-course of liver and kidney function tests during CAHIRI
deterioration of heart failure occurred on days 2 to 5 (median 4 days) after the initial triggering event.

In survivors, the time to recovery of the laboratory abnormalities was 4–90 days (median 4 days) (Tables 2 and 3, Figure 1). The time to death following CAHIRI was 1–23 days (median 4 days) (Table 3 and Figure 2). The causes of death in dopamine-treated subjects were intractable heart failure (n = 2), cardiogenic shock (n = 8), and sepsis (n = 1). No patient developed hepatic coma or severe renal failure necessitating dialysis. The histological picture of the liver in 5 patients in whom liver needle necropsy was obtained showed centrilobal necrosis.

Among the 10 survivors, 3 patients are alive at 200, 360, and 490 days following CAHIRI. 7 patients died, at 180–722 days following CAHIRI (median 420 days). The causes of late death were congestive heart failure in 4, cerebrovascular accident in 1, and myocardial infarction in 2 patients. During outpatient follow-up, 7 episodes of pulmonary oedema occurred in 5 patients and were treated with low-dose dopamine; none developed CAHIRI.

Table 3. Follow-up data of patients with CAHIRI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag-time from triggering event</td>
<td>Median</td>
</tr>
<tr>
<td>to diagnosis of CAHIRI (n = 23)</td>
<td>3 hours–2 days</td>
</tr>
<tr>
<td>Time to second-bout heart failure (n = 15)*</td>
<td>2–5 days</td>
</tr>
<tr>
<td>Time to recovery of laboratory abnormalities** (n = 10)</td>
<td>4–90 days</td>
</tr>
<tr>
<td>Time to hospital death (n = 15)</td>
<td>1–23 days</td>
</tr>
</tbody>
</table>

* Triggering event could not be determined in 2 cases.
** Return to baseline levels

Figure 2. Overall survival following CAHIRI illustrated with the aid of Kaplan-Meier curves. In surviving patients, the time elapsed from CAHIRI to the time of writing is figured by vertical marks.

Discussion

Among the complications of congestive heart failure, CAHIRI has been only occasionally mentioned [14, 15]. Nevertheless, CAHIRI is not exceedingly rare, since we observed 25 cases during a 15-year period. Hepatic injury in CAHIRI is consistent with ‘ischaemic hepatitis’ [1, 4]. The diagnosis of ischaemic hepatitis is stated when, in the appropriate context, a sharp increase in serum aminotransferase activity between 10 and 20 times the upper limit of normal occurs and is followed by a more than 50% decrease within 72 hours. Such time course of the biochemical alterations excludes the possibility of alcoholic, viral or drug-induced hepatitis [5]. In contradiction to the organic hepatic injury, renal impairment in CAHIRI was of functional nature. We named the renal counterpart of the syndrome ‘renal impairment’ in order to underscore its functional nature. Such type of renal functional derangement is noticed under circumstances reducing the effective circulatory volume or when local vasomotor alterations diminish the glomerular capillary pressure [9].

Hepatic injury and prerenal failure occurred in close proximity to cardiac decompensation (21 patients) or to a coronary event (3 patients). On the basis of the temporal relationship with a precipitating cardiac event, the similarity to well-recognized cardiogenic endorgan damage, and in the absence of other etiologies, we submit that the syndrome is caused by heart failure. As in isolated ischaemic hepatitis [4] and isolated cardiogenic renal failure [9], CAHIRI can be regarded as a form fruste of cardiogenic shock. While the cardiac etiology is obvious, the appearance of the syndrome is, nevertheless, unpredictable. Among patients who had numerous episodes of pulmonary oedema, the duration and severity of pulmonary oedema was not related to the subsequent occurrence of CAHIRI. In a previous study we compared patients who had CAHIRI with matched controls in a search for clinical and laboratory markers that could predict the occurrence of CAHIRI. Neither antecedent hepatic or renal derangement nor suspected triggering factors such as medications, hypovolaemia, hyponatraemia, and intercurrent infections were more prevalent in the CAHIRI group [7].

CAHIRI is distinct from other disorders involving both kidneys and liver such as overt cardiogenic shock [8], hepatorenal syndrome in cirrhosis or acute viral hepatitis [14], multiple system organ failure syndrome [16], and the systemic inflammatory response syndrome [17].

Considerations as to the pathophysiology of CAHIRI are based on clinical data and analogies to related disorders.

- **CAHIRI** was noticed almost exclusively in patients with chronic but not in acute heart failure. Among the compensatory responses evoked by chronic heart failure, their excessive activation may have deleterious consequences. Such are activation of the sympathetic nervous system, renin-angiotensin-aldosterone system, and increased renal formation of the vasoconstrictor prostaglandins thromboxane A2 and prostaglandin F2α, which may lead to uncontrolled vasoconstriction and may predispose to tissue ischaemia [18–21].
- Pharmacological agents interfering with adaptive mechanisms in the hepatic and renal circulations: Angiotensin-converting enzyme inhibitors by interference with the local adaptive mechanisms may decrease the hepatic blood flow in patients with congestive heart failure [22, 23]; captopril, calcium antagonists, furosemide, and nonsteroidal anti-inflammatory agents may have deleterious effects on the ischaemic kidney [24]. Continuous positive-pressure ventilation may cause significant decrease in hepatic blood flow, leading to hepatic injury [25].
• Acute hypoxaemia: Acute hypoxaemia has been described in some circumstances as the exclusive cause of ischaemic hepatitis [26] and acute hypoxaemia developing during pulmonal edema may, obviously, aggravate preexisting hepatic hypoxia caused by chronic circulatory impairment.

• Reperfusion injury: Much of the hepatic damage develops during ischemia, however, reperfusion may cause further damage to the liver by a flux of oxygen derived free radicals [27].

• Tumor necrosis factor: Released from macrophages in underperfused tissues, tumor necrosis factor depresses myocardial contractility and can be one of the factors that perpetuate heart failure [28] or cause the second bout of heart failure in CAHII.

• Substances of intestinal origin: The pathogenic effects of toxic, infectious, peptic and inflammatory substances of intestinal origin may lead to ‘multiple system organ failure’. The latter manifests one or several of the following: decreased myocardial contractility, decreased renal function, and pulmonary dysfunction [16, 29].

Mortality in CAHII was usually related to a second-phase deterioration of heart failure that occurred mostly on days 2 to 5, in spite the fast initial amelioration of clinical symptoms and laboratory abnormalities. The immediate trigger for the second-phase deterioration of heart failure is unknown. Improvement of the outcome of CAHII might be dependent on the better understanding of the pathogenesis of this second bout of heart failure and on additional therapeutic modalities.

There are limitations to this study. First our patients were all from a single referral clinic, and thus the results might not be generalizable to other clinical settings. Second, the exact time relationships of systemic haemodynamics and visceral ischaemia could not be specified. Future studies comprising haemodynamic monitoring and sequential determination of circulating cytokine levels might shed light on the pathogenesis of the second bout of heart failure in CAHII. Third, our study, which extends over a 15 year period, could not examine the effect of some novel therapies such as L-arginine to increase nitric oxide production [30], acetylcholine to improve microcirculation in the liver [31], antioxidants [24, 28], antiinflammatory proteins [19], and intraluminal oxygenation of the gut [32]. Establishment of a prospective multicenter trial for the treatment of CAHII is well-timed.

In conclusion, CAHII is a severe but potentially reversible complication of congestive heart failure that should be promptly recognized and treated. The early improvement of symptoms and laboratory alterations may be misleading since a second bout of heart failure often ensues, precipitating the patient’s death. Improvement of the outcome of CAHII might be dependent on the better understanding of the pathogenesis of this second bout of heart failure, on haemodynamic monitoring during the five-day vulnerable period, and on introduction of new therapies.

References
Mitteilungen aus der Redaktion

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

- Bilddatenbank
- Artikeldatenbank
- Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

- Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

- Impressum
- Disclaimers & Copyright
- Datenschutzerklärung