Radiofrequency Kyphoplasty for the Treatment of Osteoporotic and Neoplastic Vertebral Body Fractures - Preliminary Experience and Clinical Results after 6 Months

Elgeti F, Gebauer B

Journal für Mineralstoffwechsel & Muskuloskelettale Erkrankungen 2011; 18 (Supplementum 1), 5-9
Radiofrequency Kyphoplasty for the Treatment of Osteoporotic and Neoplastic Vertebral Body Fractures

Preliminary Experience and Clinical Results after 6 Months

F. Elgeti, B. Gebauer

Abstract
Vertebroplasty and conventional kyphoplasty using a balloon or a stent are established methods for the treatment of painful osteoporotic or neoplastic vertebral compression fractures that are resistant to conservative medical treatment. Radiofrequency (RF) kyphoplasty with ultra-high viscosity cement is an innovative method. It permits safe and effective treatment of painful osteoporotic and neoplastic vertebral compression fractures while preserving non-compromised cancellous bone. J Miner Stoffwechs 2011; 18 (Supplement 1): 5–9.

Introduction
Radiofrequency kyphoplasty using the DFine-StabiliT® Vertebroplasty Augmentation System is an evolutionary minimally-invasive procedure for the treatment of osteoporotic vertebral body fractures. Polymethylmethacrylate (PMMA) cement-based vertebroplasty and conventional balloon kyphoplasty were developed in the 1980s [1] and 1990s [2]. Since this time, they have been established and repeatedly validated as suitable procedures to achieve effective pain relief in patients with osteoporotic or neoplastic vertebral body fractures [3]. The low rate of symptomatic complications has definitely contributed to the widespread acceptance of the procedures [4]. However, rare symptomatic complications, such as transient radiculopathies, are due to frequent and uncontrolled cement leakage and cement embolism (up to 23 %), which may be regarded as system-immanent phenomena [5]. These incidents are caused by the low viscosity of the cement and, in rare cases, culminate in fatal paraplegia as described in a few case reports [6]. The incidents have also been associated with pulmonary, cardiac or paradoxical cerebral cement embolization [5, 7–9]. Therefore, cement leakage and avoidance strategies such as the use of venography [10] and a wide range of procedures including balloon kyphoplasty have long been the focus of technical discussion and development. The use of ultra-high viscosity cement and a dedicated application system for radiofrequency kyphoplasty promises better control of the cement during application and thus avoids uncontrolled leakage or embolization. In the following article we describe our preliminary experience with the system as well as the technical and clinical success achieved during the intervention and during follow-up.

The indication for vertebroplasty or kyphoplasty is established according to the guidelines and by interdisciplinary consensus: in cases of symptomatic therapy-refractory vertebral body fractures resistant to conservative drug treatment, or those of traumatic or neoplastic origin [11]. Conservative treatment should have been attempted for at least three weeks [12]. Unstable fractures should be treated as early as possible. The indications and the selection of patients for different cement compositions (such as PMMA, calcium phosphate etc.) have not yet been clearly defined. However, for purely PMMA-based cements such as DFine-StabiliT® ER2 Bone Cement, the lower age limit of 60 years should be respected because we still lack long-term results for osteoporotic vertebral body fractures. However, this age limit usually does not apply to oncological patients.

Patients and Method
We retrospectively investigated patients who had been treated with radiofrequency kyphoplasty in the first half of 2009. The underlying disease, age and grading of the fracture, the type of access (unipedicular/bipedicular), the volume of cement, peri-interventional complications (symptomatic spinal or foraminal cement leakage, pulmonary cement embolism, hemorrhage) and subsequent fractures were registered. Pain scores on the visual analog scale (VAS) and the Oswestry disability index (ODI) were determined pre-interventionally, post-interventionally (maximum 7 days), and 6 months after the intervention. VAS and ODI were compared to pre-interventional findings using the Wilcoxon rank sum test.

Inclusion and Exclusion Criteria
We retrospectively evaluated patients who had undergone treatment with radiofrequency kyphoplasty in the first half of 2009. Inclusion and exclusion criteria were symptomatic thoracic or lumbar type A fracture and no previous surgery in the spine during the preceding 12 months.

Clinical Investigation and Follow-up
The clinical examination consisted of a neurological examination to exclude fracture-associated neurological deficits or radicular symptoms. Pain scores were determined semi-quantitatively on a VAS (0–10). The ODI was determined in German [13]. On the ODI 0–20 % signified minimal, 21–40 % moderate, 41–60 % marked and 61–80 % very marked limitations,
while patients with a score of 81–100 % were bed-ridden. Scores were determined pre-interventionally, post-interventionally at the time of discharge from the hospital (at the latest after one week), and after 6 months. Comparisons of the course of VAS and ODI scores over time as well as comparisons with pre-interventional values were performed using the Wilcoxon rank sum test.

Imaging Procedures

The imaging procedures for pre-interventional diagnosis consisted of conventional X-rays of the affected portion of the spine in two planes; these should be preferably obtained with the patient standing upright and, if necessary, complemented by functional images. According to Genant et al’s [14] semiquantitative method, an osteoporotic fracture between the fourth thoracic and fourth lumbar vertebra is defined as a > 20 % deformation of vertebral height over an area comprising at least 10 to 20 % of the vertebra. A height reduction of 20–25 % is defined as Grade 1, 25–40 % as Grade 2, and > 40 % as a Grade 3 fracture. Alterations in the endplates and in morphology compared to the adjacent vertebrae are included in the assessment. MRT diagnosis of the spine (T1-weighted, T2-weighted, STIR, for oncological patients with the use of contrast medium if necessary) was performed routinely, provided the patient had no contraindications for the procedure. We also performed a targeted spinal CT of the segments to be augmented, a chest X-ray pre-interventionally for assessment of the patient’s cardiopulmonary status, and post-interventionally to exclude relevant cement embolism.

Intervention

The treatment was conducted at our department during a brief in-hospital stay. The actual procedure was performed in a biplanar X-ray fluoroscopy system (Neurostar, Siemens, Erlangen). Alternatively, in some cases it was conducted during combined CT fluoroscopy and C-arm fluoroscopy. We performed all interventions with the patient in prone position, under sterile conditions, conscious sedation, and continuous monitoring of the patient.

The type of access (unipedicular/bipedicular), cement volume, peri-interventional complications (symptomatic spinal or foraminal cement leakage, pulmonary cement embolism, hemorrhage, infection) were registered.

Results

Thirty-five patients (18 ♂ and 17 ♀) with a mean age of 70.9 (± 12.2) years were included in the study. In all 73 fractures of thoracic and lumbar vertebral bodies from the fourth thoracic vertebra to the fifth lumbar vertebra (Figure 1) were treated (1 to 6 fractures per patient). These included 20 patients with 39 osteoporotic vertebral body fractures and 15 patients with 34 fractures of neoplastic origin. Those with an underlying neoplastic disease included 12 patients with a multiple myeloma, one patient with metastatic breast cancer, one patient with metastatic colorectal cancer, and one patient with metastatic thymoma (Figure 2). The mean age of the fractures was 42.9 days (range, 1–180 days). The pre-interventional fracture grading according to Genant et al was on average 1.7 (± 1.0).

VAS scores were 8.6 (± 1.5) prior to the intervention, 3.8 (± 1.2) after the intervention, and 2.4 (± 1.4) after 6 months. ODI scores (%) at the corresponding time points were 81 (± 12), 42 (± 12) and 30 (± 14), respectively. Compared to pre-interventional values, the Wilcoxon rank sum test revealed that VAS as well as ODI scores were significantly reduced (p < 0.001) at the other time points.

Interventional complications such as symptomatic spinal or foraminal cement embolism, hemorrhage, or pulmonary cement embolism did not occur.

The procedure was performed in 56 of 73 treated segments (77 %) in unipedicular technique and in the remaining 23 % in bipedicular technique. The mean applied quantity of cement was 4.2 ml (± 1.9). During the six-month observation period, two fractures occurred in two of 20 patients with osteoporotic vertebral body fractures (10.0 %); these could be treated with no complications. Three patients were inaccessible for the six-month control investigation.

Discussion

According to our preliminary results and experience, radiofrequency kyphoplasty is a successful clinical procedure. Clinical outcomes such as pain relief on VAS and the level of limitation on the ODI were markedly improved. The technical application was associated with no symptomatic complications, particularly no radicular symptoms or spinal complications due to uncontrolled cement leakage or hemorrhage, and no pulmonary cement embolism.

The VAS score revealed a typical pattern: the substantial pain registered preoperatively improved rapidly postoperatively and the improvement was consolidated after six months. The same was true for the ODI: the very marked preoperative li-
Preliminary experience and Clinical results

mitation was improved on average to moderate limitation after six months. The patient population consisted of osteoporotic as well as of neoplastic vertebral body fractures. Similar efficacy has been reported for both groups in the published literature [3].

Analogous to the selection criteria used for other procedures, the selection of patients for radiofrequency kyphoplasty should follow the guidelines and should be based on interdisciplinary consensus. We believe that the indication for radiofrequency kyphoplasty does not essentially differ from that for other PMMA-based procedures. However, when treating younger non-oncological patients, it would be advisable to use a calcium phosphate cement. Due to its controlled applicability, radiofrequency kyphoplasty can be performed in cases of relative contraindications as well. These include, per guidelines, vertebra plana and lytic or traumatic involvement of the posterior margin.

The mean age of the fractures was about 6 weeks. In this setting the updated guidelines permit the use of early and effective pain therapy if required in the individual case [12]. Inconsistent results of current studies which doubt the efficacy of vertebroplasty and question its use [15, 16] are not yet convincing, have not been confirmed by other study groups, and contradict clinical experience as well as current and long-standing data [3, 17]. However, the results of the procedure do underline the need for careful selection of patients and exhaustion of conservative drug therapy regimens.

In the 6-month observation period, subsequent fractures occurred in two segments and in two patients (10 %). This value is in concordance with the range reported in the published literature [17, 18].

The material used for the procedure, such as the StabiliT® Vertebal Augmentation System and especially the ultra-high viscosity StabiliT® ER2 Bone Cement and the VertecoRTM MidLine Osteotome permit a safe and controlled intervention even in cases of primary application and under technically demanding conditions of treatment.

The concept of targeted fracture-specific pre-treatment using the navigational VertecoRTM-MidLine osteotome is gentler than the creation of a large balloon cavity.

A more complex cement configuration compared to the balloon depot, interlocking in cancellous bone and a slightly lesser cement volume are possibly conductive to long-term stability in terms of achieving a more favorable – i.e. less stress-shielding – effect. The cement filling protects the surrounding trabeculae from mechanical loads in the sense that adequate stimulation is avoided during the remodeling process and demineralization starts to occur. It would appear that the ultra-high viscosity cement permits interlocking in most cases of osteoporotic and neoplastic vertebral body fractures. In the presence of highly osteoporotic bone it may be advisable to use less viscous cement. Independent of viscosity or thickness, the elasticity module or the stiffness of the cured cement (about 2 Gpa) is maintained. This is comparable to the available PMMA cements and influences stress shielding in addition to the configuration of the cement itself.

The term “ultra-high viscosity” only refers to the yet unsettled cement at the time of its application in the vertebral body.

The ultra-high viscosity StabiliT® ER2 Bone Cement in conjunction with the remote-operated hydraulic assembly system
permits the clinician to perform a very well controlled intervention. No symptomatic complications were encountered. Even in the presence of apparent destruction of the posterior margin of the vertebral body (Figure 4) the cement could be applied without complications. Regarding the application procedure, beginning or actual cement leakage can be controlled. By repeated interruption of the application through the entire working time of approximately 30 minutes, the introduced cement can harden and leakages can thus be sealed. The cement injection is then continued until the desired result is achieved. Cement embolisms are also avoided by this procedure.

Relevance in clinical practice
– Radiofrequency kyphoplasty is an evolutionary procedure of kyphoplasty that permits a safe intervention because of the availability as well as the prolonged and mechanically controlled application of an ultra-high viscosity PMMA cement.
– Avoiding creation of a large cavity and the unilateral access commonly employed when using the VerteecoR™ MidLine Osteotome ensure gentle handling of the substance.
– Compared to its predecessors, radiofrequency kyphoplasty is a procedure of equivalent clinical efficacy, yet potentially less traumatic and safer.

References:
Mitteilungen aus der Redaktion

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung

Mitteilungen aus der Redaktion

Besuchen Sie unsere zeitschriftenübergreifende Datenbank

☑ Bilddatenbank ☑ Artikeldatenbank ☑ Fallberichte

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

☑ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung