Comparison of Valsartan With Candesartan on Their Possible Protection From Atherosclerosis

Mueck AO, Heuberger H, Seeger H, Wallwiener D

Homepage:

www.kup.at/jcbc

Online Data Base Search for Authors and Keywords
Comparison of Valsartan With Candesartan on Their Possible Protection From Atherosclerosis

A. O. Mueck, H. Seeger, W. Heuberger, D. Wallwiener

It is well appreciated that AT1-antagonists diminish long-term effects of angiotensin on the blood pressure which are regarded as detrimental. In the present in vitro experiments we compared the efficacies of valsartan and candesartan in preventing negative outcomes of angiotensin effect on markers of endothelial function and on proliferation of smooth muscle cells.

Angiotensin II (10 µM) induced a decrease in the concentration of endothelial-derived nitric oxide synthase and increases the concentration of the vasconstrictor endothelin, the procoagulatory substance plasminogen-activator-inhibitor-1 (PAI-1) and of the precursor of the matrix-metalloproteinase 1 (MMP-1) in endothelial cell cultures from human coronary arteries. These changes were completely prevented by the addition of 10 µM of valsartan or candesartan and partially by the addition of lower concentrations of the sartans, ie 1 µM and 0.1 µM. No significant difference was observed in the effect of the two sartans.

These results suggest that sartans may class-specifically inhibit negative actions of angiotensin II on endothelial function and smooth muscle cell proliferation. Thus sartans may be able to prevent the initiation and progression of atherosclerosis. J Clin Basic Cardiol 2001; 4: 297–9.

Key words: angiotensin II, valsartan, candesartan, atherogenesis
concentration of 1 %. Medium and test substances were changed every 48 h. After incubation for 7 days the cells were lysed by trypsinization and counted using a Coulter counter ZM1.

Statistical analysis was performed by ANOVA and Dunnett’s test from triplicates of two different experiments.

Results

Figure 1 shows the changes in eNOS concentrations after addition of angiotensin II (A II) and combinations of A II with valsartan and candesartan. A II (10 µM) triggered a decrease in eNOS concentration by 25.8 % (CI 22; 31). This reduction was dose-dependently inhibited by valsartan and by candesartan. No statistically significant difference was observed between the two sartans.

Figure 2 depicts the changes in endothelin production observed after the addition of A II and combinations of A II with valsartan and candesartan. A II (10 µM) increased endothelin synthesis by 70 % (CI 74; 65). This increase was reduced to basal values by addition of 10 µM valsartan or candesartan. At the lower concentrations of 1 and 0.1 µM the increase was partially inhibited. There were no significant differences between the effects of the two sartans.

Figure 3 shows the changes in PAI-concentration after addition of A II and combinations of A II with valsartan and candesartan. A II (10 µM) increased PAI-1 synthesis by 20 % (CI 23; 16). Again, this increase was completely reduced to basal values by the addition of 10 µM of valsartan or candesartan and partially inhibited by the addition of 1 or 0.1 µM. No differences between the effects of the two sartans were found, although valsartan exhibited a tendency toward a stronger inhibitory effect.

Figure 4 shows the changes in pro-MMP-1 concentration after addition of A II and combinations of A II with valsartan and candesartan. A II (10 µM) increased pro-MMP-1 synthesis by 44 % (CI 47; 41). Both antagonists exhibited a concentration-dependent inhibitory effect. With 10 µM valsartan or candesartan the angiotensin-induced effect was even reduced beyond the control value, yet lacking statistical significance. No significant difference was found between the two sartans.

Figure 5 illustrates the changes in cell numbers of human coronary artery smooth muscle cells after addition of A II and
combinations of A II with valsartan and candesartan. Angiotensin II was able to increase the cell number by 45.3 % (CI 38; 51). This increase was reduced dose-dependently by valsartan and candesartan. At the highest dosage of the AT 1-blockers even a reduction of the cell numbers compared to the control values were observed. No statistically significant difference was found between valsartan and candesartan.

Discussion

Disturbance of endothelial function as well as proliferation and migration of smooth muscle cells are considered early events in the initiation of atherosclerotic lesions. Angiotensin II may be involved in the initiation and progression of atherosclerosis by triggering endothelial dysfunction and proliferation of smooth muscle cells [1]. We have investigated the influence of angiotensin on several endothelial-derived substances which are involved in different stages of atherosclerosis. As markers we chose eNOS, endothelin, PAI-1 and pro-MMP-1.

The synthase of endothelial-derived nitric oxide is responsible for converting L-arginine into L-citrulline and thus generating nitric oxide (NO), a potent vasodilative, anti-aggregatory and anti-atherosclerotic compound [2]. This synthase is constitutively expressed in endothelial cells and can be up- or down-regulated by several humoral substances [2].

Endothelin is a more potent vasoconstrictor than angiotensin II itself and may be involved in the pathogenesis of hypertension [3]. Plasma levels of endothelin are enhanced in congestive heart failure and correlate with the severity of the disease [3]. In addition, endothelin is involved in the development of atherosclerosis due to its proliferative action on smooth muscle cells [3]. The observed A II-induced increase of endothelin was prevented by the addition of valsartan or candesartan.

PAI-1 is a procoagulatory substance, and a reduced fibrinolytic activity induced by enhanced serum concentrations of PAI-1 is considered an independent risk factor for cardiovascular diseases [4].

MMP-1, a collagenase, is a member of the group of proteases which have been detected in atherosclerotic plaques [5]. An enhanced synthesis of MMP-1 may contribute to plaque instability during the acute coronary syndrome which can lead to fatal outcomes such as unstable angina pectoris, myocardial infarct and sudden death.

In our experiments, A II down-regulated the concentrations of eNOS and up-regulated those of endothelin, PAI-1 and pro-MMP-1. These A II-induced negative effects were dose-dependently prevented by the addition of valsartan and candesartan. For all parameters investigated no significant differences in the effects of valsartan and candesartan were observed.

Proliferation of vascular smooth muscle cells represents a crucial step in the pathogenesis of atherosclerosis [6]. In the present study, angiotensin II stimulated the proliferation of smooth muscle cells from human coronary artery indicating that this substance may play a significant role in the development of coronary artery disease in humans. This deteriorating effect was completely suspended by the addition of valsartan or candesartan with no significant difference between these two sartans.

It is noteworthy that the concentrations used in the present study are in the upper pharmacological dosage range. For an angiotensin dosage lower than 10 µM we observed only small effects on the markers investigated. Thus, for the angiotensin antagonists higher concentrations are also required to antagonize the angiotensin-induced effects. However, higher concentrations may be required in short-time in vitro tests in which the reaction threshold can only be achieved with supraphysiological dosages. In addition, higher concentrations may be present in vivo in the vessel wall or organs compared to the concentrations which are usually measured in the blood. At the dosage of 10 µM both substances exhibit affinity for the AT 1-receptor, but this receptor is usually only marginally expressed in healthy human tissues. For other receptors highly expressed on the endothelium, like β 1- and β 2-receptors and others, both substances lacked any affinity at this concentration [7, 8].

The angiotensin-induced activation of these endothelial markers may contribute to vasoconstriction, development of atherosclerosis and destabilization of atherosclerotic plaques. The two AT 1-antagonists valsartan and candesartan were equally effective in inhibiting the negative effects of angiotensin II on these markers of endothelial function. It can be assumed that a class-specific mechanism exists for sartans on angiotensin-induced effects on endothelial function, although the role of other sartans should be examined. This mechanism can contribute to the prevention of the development of atherosclerosis and the prevention of triggering acute coronary syndromes by using sartans.

It can be summarized that valsartan and candesartan are able to prevent negative effects of angiotensin II on markers of endothelial function and on the proliferation of smooth muscle cells. These beneficial sartan effects may contribute to the protection from atherosclerosis. Since no significant difference between the two sartans was found in any of the cases, it may be speculated that a class-specific action exists. However, it might be necessary to investigate other sartans to clarify this point.

References

Mitteilungen aus der Redaktion

Besuchen Sie unsere
zeitschriftenübergreifende Datenbank

✅ Bilddatenbank ✅ Artikeldatenbank ✅ Fallberichte

e-Journal-Abo
Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

✅ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum **Disclaimers & Copyright** **Datenschutzerklärung**