PASQUALINI JR

Synthesis and regulation of sex hormones in breast tissue during pre- and postmenopause

Journal für Menopause 2001; 8 (Supplementum 2) (Ausgabe für Schweiz), 10-13

Homepage:

www.kup.at/menopause

Online-Datenbank mit Autoren- und Stichwortsuche
SYNTHESIS AND REGULATION OF SEX HORMONES IN BREAST TISSUE DURING PRE- AND POSTMENOPAUSE

INTRODUCTION

Most breast cancers (~ 95 %) are in their early stage hormone-sensitive, where the estrogen estradiol (E2) plays an important role in the genesis and development of this tumour [1, 2]. About two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissue concentrations of estrone (E1), E2 and their sulphates (E1S, E2S) are several times higher than those found in the plasma or in the area of the breast considered as normal tissue (Fig. 1) suggesting a specific tissue biosynthesis and accumulation of these hormones [3–5]. There is substantial information that premenopausal women have their biological response in the same organ as it is produced. The different estrogens were evaluated by RIA. Values (in pg/g tissue) are expressed as the means ± SEM of duplicate determinations from 3–7 experiments. Prog. = progesterone; TX-525 and TX-541 are 19-norprogestins of Theramex laboratories; R-5020 = promegestone; Nom.Ac. = nomegestrol acetate; Medrog. = medrogestone; Noreth. = norethisterone. *p = 0.05 vs E1S in the normal tissue. Quoted from [5].

Figure 1: Concentrations of estrone (E1), estradiol (E2) and their sulphates (E1S, E2S) in the tumoral tissue and the tissue considered as normal of patients with breast cancer. The different estrogens were evaluated by RIA. Values (in pg/g tissue) are expressed as the mean ± SEM (n = 14). *p = 0.025 vs E2 in the normal tissue. **p = 0.005 vs E1S in the normal tissue. Quoted from [5].

and the “sulphatase pathway” which converts E1S into E1 by the estrone-sulphatase (EC: 3.1.1.62) [11–12]. The final step of steroidogenesis is the conversion of the weak E1 to the potent biologically active E2 by the action of a reductive 17β-hydroxysteroid dehydrogenase type 1 activity (17β-HSD-1, EC 1.1.1.62) [11–12].

Quantitative evaluation indicates that human breast tissue E1S “via sulphatase” is a much more likely precursor for E2 than is androsten- edione “via aromatase” (Fig. 2) [4, 5, 13]. It is also well established that steroid sulphotransferases, which convert estrogens into their sulphates, are also present in breast cancer tissues [14, 15]. This information extends the concept of “intracrinology” where a hormone can have its biological response in the same organ as it is produced.

Figure 2: Comparative effects of various progestins on the inhibition of the estrone sulphate (E1S) conversion to estradiol (E2) in the hormone-dependent T-47D human breast cancer cell line. Preconfluent cells were incubated 24 h at 37 °C with a physiological concentration (5 × 10⁻⁹ mol/l) of [3H]-E1S alone or in the presence of progestins at the concentration of 5 × 10⁻⁷ mol/l. Results (pmol of E2 formed/mg DNA from E1S) are expressed in percent (%) of control value considered as 100 %. The data are the means ± SEM of duplicate determinations of 3–7 experiments. Prog. = progesterone; TX-525 and TX-541 are 19-norprogestins of Theramex laboratories; R-5020 = promegestone; Nom.Ac. = nomegestrol acetate; Medrog. = medrogestone; Noreth. = norethisterone. *p = 0.05 vs control value, **p = 0.01 vs control value.

Estrogen sulphatase activity in breast cancer and its control

For many years the endocrine therapy in breast cancer has been mainly by the utilization of antiestrogens (e.g. Nolvadex, tamoxifen citrate) which block the estrogen receptor. More recently, another endocrine therapy has been explored by inhibiting the tissue E2 production using different anti-enzyme agents involved in the biosynthesis of this hormone. At present, the positive effect of anti-aromatase compounds on the benefit in breast cancer patients is well documented [16–17]. However, as E1S in human breast cancer is quantitatively the most important precursor of E2, new possibilities can be opened to block E2 which is originated through this conjugate via the “sulphatase pathway”.

In human hormone-dependent breast cancer cells (MCF-7, T-47D), the estrone sulphatase activity is high. In contrast, hormone-independent breast cancer cells (MDA-MB-231, MDA-MB-468) show very low sulphatase activity in intact cells [18]. The sulphatase mRNAs are present in both the hormone-dependent and hormone-independent breast cancer cells and the expression of this mRNA correlates with the sulphatase activity [19].

Control by progestins

Various progesterone derivatives (e.g. medrogestone), as well as nor-progestins (e.g. nomegestrol acetate, promegestone) provoke a significant decrease of E2 formation when physiological concentrations of E1S are incubated with breast cancer cells (MCF-7 and T-47D) [18, 20]. Figure 2 gives a comparative study of the inhibitory effect of different progestins in the conversion of E1S.
to E2 in the T-47D hormone-dependent breast cancer cells.

Effect of Tibolone and its metabolites

In another series of studies, the effect of tibolone on the estrone-sulphatase activity was explored. Tibolone (Org OD14, active substance of Livial®) is a synthetic steroid with a 19-nor-testosterone derivative structure. This compound has a tissue-specific action with weak estrogenic, progestagenic and androgenic properties and is extensively used to prevent climacteric symptoms and postmenopausal bone loss. Tibolone and its metabolites Org 4094, Org 30126 (3α and 3β hydroxy derivatives) and its 4-en isomer (Org OM-38) are potent sulphatase inhibitors at low concentrations in hormone-dependent breast cancer cells [21] (Fig. 3).

Estradiol can inhibit estrone sulphatase in human breast cancer cells

Very recent studies of this laboratory have demonstrated that E2 at a concentration of 5×10^{-9}–5×10^{-8} M has a significant inhibitory effect on the conversion of E1S to E2 in T-47D and MCF-7 breast cancer cells. Estradiol inhibits this conversion at very low doses (5×10^{-9} M) (57.5 % of inhibition) and this effect is dose-dependent. The IC50 value (the E2 concentration which corresponds to 50 % inhibition) is 1.85×10^{-9} M [22].

17β-HYDROXYSTEROID DEHYDROGENASE (17β-HSD) IN BREAST CANCER AND ITS CONTROL

Studies on estrogen metabolism have demonstrated that the 17β-HSD (Type I) reductive activity is very high in hormone-dependent breast cancer cells (MCF-7, T-47D) whereas in breast cancer cells; tibolone and its metabolites Org 30126 and Org 4094 (at 5×10^{-7} M) significantly decrease the conversion of E1 to E2 by the reductive 17β-HSD type 1 activity (see Fig. 4). This inhibitory effect is dose-dependent. The 4-en isomer of tibolone (Org OM-38) shows an inhibitory effect only at the concentration of 5×10^{-6} M [26].

Figure 3: Comparative effects of tibolone (Org OD14, active substance of Livial®) and of its main metabolites on the inhibition of the estrone sulphate (E1S) conversion to estradiol (E2) in the hormone-dependent T-47D human breast cancer cell line.

Preconfluent cells were incubated 24 h at 37 °C with 5×10^{-7} mol/l of [3H]-E1S alone or in the presence of tibolone or its metabolites at the concentration of 5×10^{-7} mol/l. Results (pmol of E2 formed/mg DNA from E1S) are expressed in percent (%) of control values considered as 100 %. The data are the means ± SEM of duplicate determinations of 3–5 experiments. Org OM38 = 4-en isomer of tibolone; Org 4094 = 3α-hydroxy derivative of tibolone; Org 30126 = 3β-hydroxy derivative of tibolone. *p = 0.001 vs control value, **p = 0.0005 vs control value.

Figure 4: Comparative effects of tibolone (Org OD14, active substance of Livial®) and of its main metabolites on the inhibition of the estrone (E1) conversion to estradiol (E2) in the hormone-dependent T-47D human breast cancer cell line.

Preconfluent cells were incubated 24 h at 37 °C with 5×10^{-7} mol/l of [3H]-E1 alone or in the presence of tibolone or its metabolites at the concentration of 5×10^{-7} mol/l. Results (pmol of E2 formed/mg DNA from E1) are expressed in percent (%) of control value considered as 100 %. The data are the means ± SEM of duplicate determinations of 3–4 experiments. Org OM38 = 4-en isomer of tibolone; Org 4094 = 3α-hydroxy derivative of tibolone; Org 30126 = 3β-hydroxy derivative of tibolone. *p = 0.05 vs control value.
cancer can diminish the estrogenic activity.

Effect of progestins on estrogen sulphotransferase

Recent data have shown that in hormone-dependent breast cancer cells (MCF-7, T-47D) low concentrations (5 x 10^{-7} M) of promegestone (R-5020) can increase the enzyme activity, while higher concentrations (5 x 10^{-5} M) decrease this activity. This dual effect is correlated with the mRNA expression of EST, which is modulated by promegestone in a similar manner [27].

Effect of tibolone and its metabolites on sulphotransferase activity

After 24 h of incubation with a physiological concentration of [3H]-E1 (5 x 10^{-9} M) in T-47D or MCF-7 breast cancer cells; tibolone and its metabolites Org 30126 and Org 4094 (at 5 x 10^{-9} M) significantly increase the conversion of E1 to estrogen sulphates (see Fig. 5). It is remarkable that this stimulatory effect occurs at low doses. At high concentrations (5 x 10^{-8} or 5 x 10^{-4} M), we observed either no effect or an inhibitory effect of the sulphotransferase activity. The 4-en isomer of tibolone (Org OM38) shows no stimulatory effect [28].

CONCLUSIONS

Very attractive data were obtained concerning the action of various progestins (promegestone, nomegestrol acetate, medrogestone) as well as tibolone and its metabolites, on the inhibition of estrone-sulphotase and 17β-HSD enzymes involved in the formation of estradiol in breast cancer cells.

Recent data show also that some progestins (promegestone, nomegestrol acetate, medrogestone) as well as tibolone in hormone-dependent breast cancer cells can stimulate sulphotransferase activity. This is an important point in the physiopathology of this disease because it is well known that the estrogen sulphates are biologically inactive. For these inhibitory or stimulatory effects on the control of the enzymes involved in the formation and transformation of estrogens in breast cancer, we propose the concept of: Selective Estrogen Enzyme Modulator (SEEM) (Fig. 6).

The exploration of various progestins, tibolone and its metabolites, in trials with breast cancer patients, showing an inhibitory effect on sulphatases and 17β-HSD and a stimulatory effect on sulphotransferases, will provide a new possibility in the treatment of this disease.

The paradoxical effect of E2 in blocking sulphatase activity in breast cancer cells could be related to estrogen replacement therapy in which it is observed that this treatment in post-menopausal women has no effect or can reduce breast cancer mortality [29, 30].

References:

Prof. Dr. Jorge R. Pasqualini

Discoverer of many new steroids, including corticosteroid sulphates, as well as new metabolic pathways in the fetal compartment and in adults. Discoverer of steroid receptors in various fetal tissues.

Research activities concerning the role of histones and HMG proteins on steroid actions and on the effects of oncogenes and growth factors in fetal and cancer cells.

Recent research activities focussing on biological effects of estrogens, anti-estrogens and progestins in human breast cancer, in order to evaluate potential clinical applications. Author of numerous professional articles and books.

Member of several international scientific societies.

Editor-in-Chief of the international scientific journal: The Journal of Steroid Biochemistry and Molecular Biology.

Correspondence to:
Prof. Dr. Jorge Pasqualini,
Hormones and Cancer Research Unit
F-75014 Paris, 26 Blvd Brune
E-mail: jorge.pasqualini@wanadoo.fr
Mitteilungen aus der Redaktion

Besuchen Sie unsere Rubrik

✔ Medizintechnik-Produkte

Neues CRT-D Implantat
Intica 7 HFT OP von Biotronik

Aspirator 3
Labotect GmbH

Artis pheno
Siemens Healthcare Diagnostics GmbH

Philips Azurion:
Innovative Bildgebungslösung

InControl 1050
Labotect GmbH

e-Journal-Abo

Beziehen Sie die elektronischen Ausgaben dieser Zeitschrift hier.
Die Lieferung umfasst 4–5 Ausgaben pro Jahr zzgl. allfälliger Sonderhefte.
Unsere e-Journale stehen als PDF-Datei zur Verfügung und sind auf den meisten der marktüblichen e-Book-Readern, Tablets sowie auf iPad funktionsfähig.

✔ Bestellung e-Journal-Abo

Haftungsausschluss

Bitte beachten Sie auch diese Seiten:

Impressum Disclaimers & Copyright Datenschutzerklärung